Способы подключения электродвигателей

Схема подключения электродвигателя к сети

Электродвигатели переменного тока бывают трех и однофазные.
Асинхронные однофазные двигатели имеют на корпусе 2 вывода и подключить их к сети не составляет трудности. Т.к. вся бытовая электрическая сеть в основном однофазная 220В и имеет 2 провода — фаза и ноль. С синхронными все намного интереснее, их тоже можно подключить с помощью 2 проводов, достаточно обмотки ротора и статора соединить. Но соединять их нужно так, чтобы обмотки однополюсного намагничивания ротора и статора располагались напротив друг друга.
Сложности представляют двигатели для 3ех фазной сети. Ну во-первых у таких двигателей в основном в клеммной коробке 6 выводов и это означает что обмотки двигателя нужно подключать самому, а во-вторых их обмотки можно подключать разными способами — по типу «звезда» и «треугольник». Ниже приведен рисунок соединения клем в клеммной коробке, в зависимости от типа соединения обмоток.

Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в  раз.  Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке. Обмотка ротора этого двигате­ля соединена с пусковым реостатом ЯР, создающим в цепи рото­ра добавочное сопротивление Rдобав.

Общие сведения об МПТ

Сегмент МПТ или электромеханических преобразователей можно условно разделить на однофазные и трехфазные системы. Также на базовом уровне выделяют асинхронные, синхронные и коллекторные устройства, при этом общий принцип действия и конструкционное исполнение у них имеет много схожего. Данная классификация машин переменного тока носит условный характер, поскольку современные станции электромеханического преобразования частично задействуют рабочие процессы от каждой группы устройств.

Вам будет интересно:Пылеулавливающий агрегат (ПУ). Типы пылеулавливающих агрегатов

Как правило, в основе МПТ находится статор и ротор, между которыми предусматривается воздушный зазор. Опять же, независимо от типа машины, рабочий цикл строится на вращении магнитного поля. Но если в синхронной установке движение ротора соответствует направлению силового поля, то в асинхронной машине ротор может двигаться в другом направлении и с разными частотами. Это различие обуславливает и особенности применения машин. Так, если синхронные могут выступать и в качестве генератора, и как электромеханический двигатель, то асинхронные в основном используют как двигатели.

Вам будет интересно:Кожевенное производство: история, описание и применяемые технологии

Что касается количества фаз, то выделяют одно- и многофазные системы

Причем, с точки зрения практического использования, заслуживают внимание представители второй категории. Это по большей части трехфазные машины переменного тока, в которых функцию энергоносителя как раз выполняет магнитное поле

Однофазные же устройства ввиду эксплуатационной непрактичности и крупных размеров постепенно выходят из практики применения, хотя в некоторых сферах решающим фактором их выбора является низкая стоимость.

Как устроен трехфазный асинхронный двигатель

В свою конструкцию электродвигатель на 380 вольт включает короткозамкнутый ротор. В этом случае какие-либо электрические контакты между статором и ротором полностью исключаются. Они не требую щеток и коллекторов, которые в обычных двигателях изнашиваются с высокой интенсивностью. Этим деталям нужны регулярное техническое обслуживание и периодическая замена.

Все детали устройства собраны в литом корпусе (7). Основные элементы состоят из неподвижного статора и подвижного ротора. Основой статора служит сердечник (3). Для его изготовления применяется высококачественная электротехническая сталь, в состав которой входят железо и кремний. Именно они придают материалу необходимые магнитные свойства.

Листовая конструкция статора позволяет избежать появления вихревых токов Фуко, создаваемых переменным магнитным полем. Дополнительную изоляцию листов создает специальный лак, нанесенный с обеих сторон. Таким образом, проводимость в сердечнике полностью исключается, остаются лишь его магнитные свойства.

В пазы сердечника укладываются три медные обмотки (2), с проводниками, защищенными эмалью. Между собой они расположены под углами 120 градусов. Концы обмоток выводятся и размещаются в клеммной коробке, расположенной внизу двигателя.

Ротор закрепляется на валу (1) и свободно вращается внутри статора. Между ними остается минимальный зазор – от 0,5 до 3 мм, чтобы повысить КПД. В сердечнике ротора (5) также использована электротехническая сталь. Однако в его пазах установлены не обмотки, а короткозамкнутые проводники, расположенные в виде беличьего колеса. Поэтому данный элемент именно так и называется.

В состав беличьего колеса входят продольные проводники, имеющие электрическую и механическую связь с кольцами, расположенными в торцах конструкции. В мощных двигателях все элементы изготавливаются из меди.

Подключение

Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4. Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.


Называют их конденсаторными.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.


Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.


Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.. Вот схема, по которой подключается этот элемент в питание электродвигателя:

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Погружаемся в теорию

Работа электродвигателя переменного тока основана на свойстве магнитного поля, заключающемся во взаимодействии с другими полями. Так, если первое поле содержится внутри второго, вращающегося вокруг своей оси, то оно тоже начнет вращаться. Это явление доказывается опытным путем.

Дугообразный магнит укреплен так, чтобы его можно было приводить в движение с помощью ручки. Между северным и южным полюсом помещается цилиндр, выполненный из меди. Он может вращаться.

Если крутить ручку, то магнит начнет обращаться вокруг своей оси. Поэтому магнитный поток, проходящий через цилиндр, будет меняться. А это главное условие для образования вихревых токов внутри самого цилиндра. А электрический ток всегда создает вокруг магнитное поле. Поля магнита и цилиндра начинают взаимодействовать друг с другом, результатом чего становится вращение этого цилиндра в том же направлении, что и подковообразный магнит.

Так как вращение цилиндра – результат воздействия вращающегося магнитного поля, то он будет отставать на некоторую величину, которую называют скольжением. Оно рассчитывается по формуле (выражается в процентах):

Где s – скольжение, n – скорость вращения постоянного магнита (называют синхронной), n0 – медного цилиндра (называют асинхронной). Именно разница в этих скоростях – необходимое условие для работы электродвигателя.

Вид и функционирование реверсивной схемы на 220 В

На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):

  1. Блокирующие или блок-контакты,
  2. Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
  3. Контакты тепловой или токовой защиты (релейные элементы),
  4. Силовые контакты пускателей.

Вид реверсивной схемы на 220 В

Кроме этого, буквенно-числовыми обозначениями выделяются:

  • МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
  • Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
  • М – электродвигатель.

Принцип функционирования

Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).

После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.

Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.

При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.

Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Реле времени «Стар-Дельта»

Использование обычного реле времени на современных системах не пользуется популярностью. Тому есть несколько причин:

  1. Модели пневматического и механического типа отличаются чувствительностью к внешним факторам и перебоям питания.
  2. При создании цепи необходимо включать второе реле, контролирующее паузу между сменой режимов. Данная опция часто упускается, из-за чего появляются конфликты между контакторами.
  3. Стоимость установки универсального варианта практически не отличается от специализированных моделей.

При учете этих и других нюансов наиболее рациональным становится установка специальных реле типа «Стар-Дельта». При доступной стоимости, данный прибор позволяет осуществлять автоматический контроль работы и своевременное переключение режимов.

Преимущества

Специализированные реле могут получать питание от разного напряжения (например, 220В и 24В), что дает больше возможностей по выбору контакторных катушек. Также это позволяет подобрать нужный режим питания для реле, исходя из параметров пускового контактора. Функционально устройство предоставляет возможность регулировать время разгона. Пауза устанавливается на промежуток от 1 секунды до 16 минут. На передней панели для этого есть специальные регуляторы и переключатели.

Принцип работы

На боковой стороне специализированного реле или в сопроводительной документации зачастую указывается диаграмма его срабатывания во временных промежутках. Согласно ей, при подаче пускового питания на устройство, производится включение схемы «star». Начинается период разгона. Он может регулироваться с помощью специальных органов управления, расположенных для этого на передней панели.

По прошествии установленного промежутка, контактор «звездного» соединения размыкается, наступает пауза, длительность которой также регулируется. Период характеризуется подачей на обмотки напряжения без тока. Вращение вала продолжается за счет инерции. После окончания паузы вторым контактором включается режим «треугольник» и двигатель выходит на номинальную рабочую мощность.

Особенностью такого специализированного реле является возможность самостоятельно выбирать необходимый режим работы. За точностью и правильной последовательностью запуска следит программа, что исключает необходимость постоянного контроля питания со стороны оператора, а также сводит к минимуму вероятность аварийной ситуации.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Виды шаговых двигателей по типу соединения электромагнитов статора:

По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.

На рисунке представлено упрощённое, схематическое, представление обмоток. На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно

  • Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
  • Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
  • 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.

Что такое конденсатор

Перед тем, как начать рассматривать особенности подключения электродвигателя на 220 вольт посредством схем с конденсатором, давайте ознакомимся с тем, что представляет собой этот прибор. 

Итак, конденсатор – это элемент электротехники, деталь, состоящая из двух пластин, изготовленных из металла, которые разъединены слоем диэлектрического вещества. Когда к этим пластинам подается электрическое напряжение, происходит накопление заряда, которое находится внутри приспособления. Чем оно выше, тем больше заряд самих пластин. 

Расчет емкости пластины, пример

Когда же напряжение перестает подаваться на металлические детали, конденсатор отдает свой заряд. При использовании переменного тока питания будет наблюдаться периодическая смена полярности напряжения. То есть, ток на пластинках будет то отрицательного, то положительного типа.

Ёмкость конденсаторного элемента – ключевая его характеристика, первое, на что обращается внимание при выборе компонента. С помощью этого числа можно точно определить объем энергии, которую прибор пропускает через себя в процессе работы

Показатель измеряется в фарадах. Данная величина довольно-таки большая, поэтому при идентификации параметра применяют своего рода приставки, с помощью которых вычисляется небольшая часть, которая собственно и используется. Например, часто можно встретить микрофарад, который равен приблизительно 0,000001 фараду. 

Каждый такой элемент работает с номинальным напряжением определенного уровня. Правильный подбор конденсатора обеспечит долговечную и надежную работу. На маркировке детали указывается ее предельный показатель наработки, который выражается в часах. 

Разновидности устройств

Всего реализовано несколько разновидностей данных элементов, каждая  з которых имеет свои особенности.

Основные виды конденсаторов:

  • полярные. Разработаны для применения в электроцепях постоянного тока. Их ключевая особенность – необходимость подсоединения в полном соответствии с указанным значением полярности. Обладают малыми габаритами и увеличенной ёмкостью;
  • неполярные. Их подключение осуществляется независимо от показателя полярности. Применяются в большинстве ситуаций в сетях, переменного тока. размеры данных приборов больше, чем полярных;
  • электролитической конструкции. В качестве металлических пластин установлены листы фольги, тонкая прослойка окисла здесь – диэлектрик.  

По способу применения также есть несколько разновидностей конденсаторов, среди которых наиболее распространенными являются пусковые. Для этой роли лучше всего подходят именно электролитические модели. Они демонстрируют свою высокую эффективность при рабочей частоте тока в 50 Герц и напряжением 220 – 600В. 

Модели с электролитами обладают высокой ёмкостью, которая в самых мощных моделях достигает показателей превышающих 100 000 микрофарад. Компоненты достаточно уязвимы к различным негативным влияниям, в частности к перегреву. Когда тепловой режим нарушается, детали быстро приходят в негодность. В конденсаторах неполярного типа этот недостаток исправлен, что сказывается на стоимости.

А сейчас давайте же более детально рассмотрим пусковые конденсаторы и их основные особенности.

Пусковые приборы

Когда силовой агрегат работает в штатном режиме, вращение его компонентов обеспечивается обмотками. Но, когда происходит непосредственно запуск, возникает необходимость начать вращения, а для этого стандартных ресурсов двигателя бывает недостаточно. Именно использование дополнительного инструментария позволяет осуществить плавный старт, без рывков. Можно применять для таких целей рабочий конденсатор, который копит заряд, показатели которого превышают уровень рабочего напряжения. Далее элемент отдает заряд в необходимый момент. Но и этого недостаточно, поэтому применяется еще один важный усилитель – пусковой конденсатор. 

Данная деталь запускается временно, на промежуток, не превышающий несколько секунд. Осуществляется это посредством кратковременного нажатия кнопки пуска. Выключение конденсатора проводится автоматически, после начала самостоятельного набора скорости двигателем. 

Применение конденсатора пускового действия особенно важно, когда мотор нуждается в запуске под нагрузкой. Здесь нужно увеличивать стартовый момент на протяжении первых секунд старта. 

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: