Для низкого напряжения
Может быть, что той же табличке написано Δ/Ỵ 127/220. Это говорит о том, что требуется «звездная» схема подключения обмоток. Если клеммной коробки нет, двигатель подключен «треугольником», а концы, как это часто бывает, не подписаны – не беда. Решение проблемы есть. Правда, в этом случае все несколько сложнее и займет больше времени.
Разведите все концы и с помощью омметра отыщите катушки статора.
Пометьте их с помощью скотча или цветной изоленты. Возможно, это пригодится еще не раз.
Возьмите батарейку и подключите ее к а1-а2. к в1-в2 подключите омметр.
Когда контакт с батарейкой будет разорван, стрелка на омметре сдвинется в сторону. Запомните, куда именно указала стрелка и присоедините прибор к с1-с2. Полярность менять не нужно. Проделайте все снова.
Стрелка может качнуться в другую сторону. В этом случае провода нужно поменять местами, и сменить маркировку. Стрелка должна отклоняться только в одну сторону.
Батарейка, на которой соблюдена полярность, соединяется с с1-с2, а измерительный прибор с а1-а2.
Теперь все нужно перепроверить. Стрелка должна отклоняться одинаково на всех катушках. Если все верно, пучок с одинаковыми цифрами (допустим, 1) — это начало, с цифрой 2 – конец.
Все три конца (а2, в2, с2) нужно соединить и изолировать. Это и есть соединение по схеме звезды. Его можно вывести на клеммник, сделать маркировку для удобства, нарисовать или наклеить схему, по которой соединены обмотки.
Переключение с «треугольника» на «звезду» готово. Устройство можно подключать к сети.
Подключение однофазного синхронного электродвигателя
Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.
Метод разгона
Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.
Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:
- Вручную;
- С использованием второго двигателя.
Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.
При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.
Асинхронный пуск синхронного мотора
Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.
Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.
Область применения
Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.
Применяется асинхронный электродвигатель во многих сферах:
- Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
- Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
- Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
- Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.
Однофазные электродвигатели
Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами
Они подразделяются по типам в зависимости от способа пуска.
Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.
На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.
Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи
Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор
Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Принцип работы
Обмотки статора генерируют магнитные поля с переменным током. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.
Если в двигателе нет стартера, ротор останавливается, так как результирующий крутящий момент равен нулю. Если ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, поскольку вал двигателя продолжает вращаться в этом направлении.
Пусковой момент
Пусковым сигналом является магнитное поле обеих обмоток, которое вращает подвижную часть двигателя. Он генерируется 2 обмотками: основной и пусковой. Вторая меньшая обмотка является пусковой и подключается к основной цепи однофазного двигателя через емкостной или индуктивный резистор.
Обмотка стартера может работать в течение короткого времени. Более длительная работа под нагрузкой может привести к перегреву и воспламенению изоляционных компонентов, что приведет к выходу из строя.
Надежность повышается за счет включения в цепь однофазного асинхронного двигателя таких компонентов, как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу, когда ротор достигает номинальной скорости. Отключение происходит автоматически.
Реле работает следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая выход из строя из-за перегрузки или любой другой причины. Это защищает от огня.
Вас также может заинтересовать статья Все, что нужно знать о шаговых двигателях в нашей другой статье.
варианты подключения
Для работы двигателя необходимо наличие одной фазы 220 В. Это означает, что подойдет любая стандартная розетка. Эта простота сделала двигатели популярными в быту. В каждом бытовом приборе, от стиральной машины до соковыжималки, есть эти механизмы.
Известны два типа однофазных двигателей, в зависимости от способа их подключения:
- Однофазный асинхронный двигатель с пусковой обмоткой.
- Однофазный двигатель с конденсатором.
Принципиальная схема однофазного асинхронного двигателя с конденсатором показана на рисунке.
Схема включает в себя пусковую обмотку с конденсатором. Когда ротор ускоряется, катушка отключается. Пусковой конденсатор предотвращает размыкание пусковой цепи, и пусковая обмотка непрерывно проходит через конденсатор.
Одновременно с рабочей обмоткой на пусковую катушку подается напряжение от конденсатора. В режиме запуска катушка имеет более высокое активное сопротивление. Сдвиг фаз становится достаточно большим, чтобы начать вращение.
Допускается изготовление пусковой обмотки с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется путем его подключения к пусковой обмотке и временному источнику питания.
Для достижения максимального пускового момента необходимо вращающееся магнитное поле. Для этого необходимо добиться положения обмоток 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, приведенных ниже.
Различные варианты подключения:
- Временное подключение электрического тока к обмотке стартера через конденсатор;
- Питание стартера через резистор, без конденсатора;
- Постоянно подключен к пусковой обмотке через конденсатор, одновременно с работой рабочей обмотки.
Конденсаторный пускатель имеет следующие особенности:
Устройство и принцип действия асинхронного двигателя
Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.
Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.
Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».
Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.
Асинхронный двигатель с короткозамкнутым ротором
Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.
Асинхронный двигатель с фазным ротором
Такое устройство позволяет регулировать скорость работы в широком диапазоне. Фазный ротор представляет собой трехфазную обмотку, которая соединяется по схемам «звезда» или треугольник. В таких электродвигателях в конструкции имеются специальные щетки, с помощью которых можно регулировать скорость движения ротора. Если в механизм такого двигателя добавить специальный реостат, то при пуске двигателя уменьшится активное сопротивление и тем самым уменьшатся пусковые токи, которые пагубно влияют на электрическую сеть и само устройство.
Принцип действия
При подаче электрического тока на обмотки статора возникает магнитный поток. Так как фазы смещены относительно друг друга на 120 градусов, то из-за этого поток в обмотках вращается. Если ротор короткозамкнутый, то при таком вращении в роторе появляется ток, который создает электромагнитное поле. Взаимодействуя друг с другом, магнитные поля ротора и статора заставляют ротор электродвигателя вращаться. В случае, если ротор фазный, то напряжение подается на статор и ротор одновременно, в каждом механизме появляется магнитное поле, они взаимодействуют друг с другом и вращают ротор.
Сферы применения
Без асинхронных машин с короткозамкнутым ротором не может обойтись ни промышленность, ни транспорт, ни быт и др. Они используются практически везде. Это и электроприводы дымососов, подъемных кранов, шаровых мельниц, насосов, лебедок, дробилок, станков, бытовой техники. При необходимости ступенчатого изменения скорости (в тех же лифтах) пользуются многоскоростными асинхронными двигателями. Где требуется быстро остановиться и зафиксировать вал, когда исчезает напряжение, не обойтись без асинхронных двигателей с электромагнитным стопором (станки, лебедки). Асинхронные двигатели с большой величиной скольжения хорошо справляются с повторно-кратковременными режимами и при пульсации нагрузки.Широкое применение находится и линейным асинхронным двигателям из-за простого производства и хорошей надежности. Однофазными машинами оборудуются небольшие устройства (бытовые вентиляторы, мини-помпы и др.). Наиболее эффективны 2-х фазные асинхронные машины, когда их питание идет от однофазной сети переменного тока. Другое их название – конденсаторные двигатели, поскольку без фазосдвигающего конденсатора они не могут работать.Трехфазные электромашины устанавливаются на станочное оборудование, тали, пилорамы, строительные краны и др. У 3-х фазных асинхронных машин с фазным ротором цена выше, чем у машин с короткозамкнутым ротором, но их пусковые нагрузочные моменты намного больше. Поэтому эти двигатели составляют привода на лифтах и подъемных кранах, т. е. там, где требуется запуск в условиях нагрузки.
Читайте Алмазный карьер мир
Как производятся расчеты
Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:
И выразить из нее скорость вращения ротора:
В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.
При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:
Таким образом, величина скольжения электродвигателя составляет:
И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.
Источник
Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).
Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.
Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.
По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.
Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в.течение нескольких секунд достигает почти номинальной скорости.
Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.
Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).
Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.
Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).
Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей
Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.
Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.