Алюминиевый сплав в95

Деформируемые алюминиевые сплавы

Довольно большое распространение деформируемых алюминиевых сплавов можно связать с тем, что при их применении процесс производства различных изделий существенно упрощается. Область применения следующая:

  1. Прокат.
  2. Штамповка.
  3. Ковка.
  4. Прессовка.
  5. Экструзия.

Деформируемые алюминиевые сплавы

В результате получаются различные заготовки или уже практически готовые детали с исключительными эксплуатационными качествами. После получения требующейся формы проводится отжиг, закалка или старение, которые позволяют существенно повысить показатель прочности. Данный типа алюминия применяют для получения труб, листа или профиля.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Как улучшить прокат АД31


Для улучшения качественных характеристик сплав АД31 подвергают высокотемпературной обработке. Алюминий после закалки и старения приобретает новые свойства.

Закалка, естественное и искусственное старение проката — это нагрев металла до температуры рекристаллизации и регулируемое охлаждение. На свойства изделий влияет время и температура, при которой происходит процесс охлаждения. Медленное охлаждение в естественных условиях позволяет получить металлопрокат, обладающий повышенной пластичностью. Принудительное охлаждение после закалки делает металл более твердым, при этом его прочность на разрыв увеличивается на 40%.

Сплавы алюминия с марганцем и магнием

Среди неупрочняемых алюминиевых сплавов наибольшее значение приобрели сплавы на основе Al-Mn и Al-Mg.

Марганец и магний, так же как и медь, имеют ограниченную растворимость в алюминии, уменьшающуюся при снижении температуры. Однако эффект упрочнения при их термообработке невелик. Объясняется это следующим образом. В процессе кристаллизации при изготовлении сплавов, содержащих до 1,9% Mn, выделяющийся из твердого раствора избыточный марганец должен был бы образовать с алюминием растворимое в нем химическое соединение Al (MnFe), которое в алюминии не растворяется. Следовательно, последующий нагрев выше линии предельной растворимости не обеспечивает образование гомогенного твердого раствора, сплав остается гетерогенным, состоящим из твердого раствора и частиц Al (MnFe), а это приводит к невозможности закалки и последущего старения.

В случае системы Al-Mg причина отсутствия упрочнения при термической обработке иная. При содержании магния до 1,4% упрочнения быть не может, так как в этих пределах он растворяется в алюминии при комнатной температуре и никакого выделения избыточных фаз не происходит. При большем же содержании магния закалка с последующим химическим старением приводит к выделению избыточной фазы — химического соединения Mg Al .

Однако свойства этого соединения таковы, что процессы, предшествующие его выделению, а затем и образующиеся включения не вызывают заметногоэффекта упрочнения. Несмотря на это, введение и марганца, и магния в алюминий полезно. Они повышают его прочность и коррозионную стойкость (при содержании магния не более 3%). Кроме того, сплавы с магнием более легкие, чем чистый алюминий.

Технология производства

Для получения дюралюминия сначала смешивают шихту — гранулы различных металлов, которые будут сплавляться в единый состав. Затем смесь нагревают до температуры +500°C и резко охлаждают водой или селитрой до комнатной температуры — закаливают.

Промышленное получение дюралюминия основано на использовании электричества огромной мощности.

После этого в большинстве случаев производят т. н. «искусственное старение» полученного сплава. Эта операция заключается в дополнительной выдержке металла при повышенной температуре в течение длительного времени, например, при +150…+200°С в течение 2 часов (все условия зависят от марки соединения и требуемых качеств). Процесс старения проводят для приобретения дюралюминием особой прочности. Без него сплав характеризуется мягкостью, податливостью.

После изготовления состав может покрываться защитной пленкой, предохраняющей от коррозии.

Форма выпуска и сортамент

Сплав может выпускаться в обычном состоянии, а также подверженный различным видам обработки:

  • В – обычный,
  • М – отжиг, после которого повышается пластичность,
  • Т – термообработка и естественное старение,
  • Т1 – термическая обработка и искусственное старение,
  • Н – с наклепом,
  • П – с плакированием.

Последний тип материала изготавливается в виде листов с плакированием 3±1% технического алюминия, что защищает от химически агрессивных сред и воздействия электрического тока. Это позволяет защитить металл при наличии царапин, и не допустить его дальнейшего корродирования.

Из алюминиевого сплава В95 изготавливают:

К преимуществам металла относятся устойчивость к деформации и коррозии при работе в нормальных условиях. При повышении нагрузки, направленной точечно, коррозионная стойкость значительно снижается, что является причиной появления очагов коррозии. Одна из мер защиты – покрытие деталей составами, защищающими от окисления.

Маркировка алюминиевых сплавов

При определении марки алюминиевых сплавов можно столкнуться с определенными сложностями. Маркировка выполняется таким образом, чтобы вопросов при уточнении соединения не возникало. Составы имеют определенное буквенно-цифровое обозначение.

Особенности маркировки заключаются в следующем:

  • в начале стоят одна или несколько букв, указывающие на состав соединения;
  • маркировки включают в себя цифровой порядковый номер;
  • заканчиваться маркировка может также буквой, обозначающей особенности обработки материала (например, термической).

Ознакомимся с правилами маркировки на примере сплава Д17П. Первая буква Д обозначает состав сплава – дюралюминий. В составе всех дюралюминиев присутствуют определенные химические элементы, различающиеся по количественному содержанию. Порядковый номер 17 указывает на конкретный материал, обладающий определенными свойствами. Буква П в конце маркировки используется для обозначения способа обработки полунагартованного соединения, получаемого под давлением без предварительного нагрева металла, соответственно, прочностные характеристики будут составлять половину от максимально возможных.

Маркировка алюминиевых сплавов производится по ГОСТу 4784-97, определяющему основные требования к обозначению соединений.

Термообработка

Для повышения максимальной прочности В95 проходит через следующие операции:

  • закаливание при температуре до 475 ºC;
  • охлаждение в воде, нагретой до 100 ºC;
  • искусственное старение, производимое при 120 — 125 ºC.

Время обработки и температурные режимы могут изменяться, во многом это зависит от толщины детали и структуры сплава.

В процессе термической обработки особое внимание необходимо уделять температуре охладителя. Если она не будет отвечать указанным требованиям, то на поверхности детали, возможно, получение трещин и коробление, а это приведет в результате к снижению стойкости этого материала к коррозии

Источник

Химический состав и состояние

Чистый алюминий является довольно слабым конструкционным материалом с пределом прочности около 90 МПа. Однако при добавлении к алюминию небольших количеств таких легирующих элементов как марганец, кремний, медь, магний или цинк, а также соответствующей термической обработки и/или после холодной пластической деформации, предел прочности алюминия – или уже алюминиевого сплава – может достигать 700 МПа.

Многие алюминиевые сплавы имеют широкие интервалы механических и физических свойств в зависимости от вида их состояния. Эти состояния они получают в результате технологической обработки алюминиевого изделия, как термической, так и деформационной. Эти широкие интервалы свойств алюминиевых сплавов дают возможность широкого выбора именно такого алюминиевого сплава, который бы максимально обеспечивал заданные свойства при минимуме затрат.

Расшифровка

Алюминиевый сплав В95 включает в свой состав такие вещества, как:

  • цинк 5 — 7%;
  • магний 0,2 -0,6%;
  • медь 1,4 — 2% и некоторые другие.

Маркировка В95, означает, что этот сплав относится к дюралям высокой прочности об этом говорит индекс В, цифра 95 показывает на чистоту сплава.

Материал в обыкновенных условиях достаточно стойко переносит воздействие коррозии. Но, при высоком точечном давлении он быстро начинает корродировать. Сплав этой марки, может, переносить нагрузки в разных направлениях, но при этом может проявить разные механические свойства, это явление называют анизотропией. Кстати, если детали, выполненные из сплава В95, подвергнуть искусственному старению, то их антикоррозионные свойства резко снижаются. В таких случаях применяют сплав под названием В95Т1.

Аналоги

Свойства металла и его высокая востребованность привела к тому, то во многих странах металлургические предприятия выпускают такой сплав.

Зарубежные металлургические компании выпускают следующие материалы — аналоги В95.

  • США — AA7075;
  • Германия — 3.4365;
  • Япония — 7075;
  • Европейский Союз — ENAW-AlZn5.5MgCu;

ГОСТы

Компании, импортирующие сплавы, должны предоставлять потребителям внутри нашей страны документы, подтверждающие соответствие поставляемого материала требованиям отечественных ГОСТ.

Химсостав этого материала установлен в ГОСТ 4784-97. Предприятия цветной металлургии выпускают следующую номенклатуру продукции:

  • трубы прессованные ГОСТ 18482-79;
  • прутки, в т.ч. повышенной прочности ГОСТ 21488-97, ГОСТ 51834-2001;
  • лента отожж. ГОСТ 13726-97;
  • профили, в т.ч. отожжённые ГОСТ 8617-81, ГОСТ 8617-81;
  • плиты толщиной от 11 до 60 мм ГОСТ 17232-99.

Изделия и заготовки из сплава марки В95 поставляют в различном состоянии:

  • закаленном и искусственно состаренным;
  • в пластичном, которую он приобретает после прохождения термической обработки;
  • с нанесенным чистым алюминием;
  • и в обычном твердом состоянии.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Стандарты

Название Код Стандарты
Ленты В54 ГОСТ 13726-97
Листы и полосы В53 ГОСТ 17232-99, ГОСТ 21631-76, ОСТ 1 90246-77, ОСТ 4.021.047-92, ОСТ 4.021.061-92, TУ 1-2-298-80, TУ 1-2-87-77, TУ 1-804-473-2009
Трубы из цветных металлов и сплавов В64 ГОСТ 18482-79, ОСТ 1 92048-90, ОСТ 1 92048-76, TУ 1-8-243-2000, TУ 1-804-095-89
Прутки В55 ГОСТ 21488-97, ГОСТ Р 51834-2001, ОСТ 4.021.017-92, ОСТ 4.021.036-92, TУ 1-2-307-79, TУ 1-2-459-84
Цветные металлы, включая редкие, и их сплавы В51 ГОСТ 4784-97, ОСТ 4.021.009-92
Сортовой и фасонный прокат В52 ГОСТ 8617-81, ГОСТ 13616-97, ГОСТ 13617-97, ГОСТ 13618-97, ГОСТ 13619-97, ГОСТ 13620-90, ГОСТ 13621-90, ГОСТ 13622-91, ГОСТ 13623-90, ГОСТ 13624-90, ГОСТ 13737-90, ГОСТ 13738-91, ГОСТ 17575-90, ГОСТ 17576-97, ГОСТ 29296-92, ГОСТ 29303-92, ГОСТ Р 50066-92, ГОСТ Р 50067-92, ГОСТ Р 50077-92, ОСТ 1 92093-83, ОСТ 1 92066-91, ОСТ 1 92067-92, ОСТ 1 92069-77, ОСТ 1 90113-86, ОСТ 1 90040-71, ОСТ 4.021.134-92, ОСТ 4.021.136-92, TУ 1-2-370-77, TУ 1-2-401-80
Обработка металлов давлением. Поковки В03 ОСТ 1 90073-85

Классификация марок алюминия

Среди марок алюминия различают по способу выплавки и назначению:

  • марки первичного алюминия
  • марки деформируемого алюминия
  • марки литейного алюминия

Марки первичного алюминия

Первичный алюминий подразделяются на:

  • алюминий особо высокой чистоты (содержание алюминия выше 99,995%)
  • алюминий высокой чистоты (содержание алюминия от 99,95 до 99,995%)
  • алюминий технической чистоты (содержание алюминия от 99,00 до 99,85%)

Марки первичного алюминия применяют, главным образом, для переплавки при изготовлении алюминиевых сплавов, деформируемых и литейных. При этом для сплавов общего назначения применяются марки алюминия технической чистоты. Для изготовления специальных сплавов применяют марки алюминия высокой чистоты, например, для авиации и космонавтики. Кроме того, марки высокой чистоты и особо высокой чистоты применяют в различных высокотехничных технологиях, например, при производстве полупроводников.

Марки деформируемого алюминия

Основные марки деформируемого алюминия имеют чистоту от 99,00 до 99,85%. Они предназначены для изготовления продукции методом горячей и холодной обработки металлов давлением, то есть – прокаткой, экструзией, волочением, штамповкой и т. п.

Марки литейного алюминия

Марки литейного алюминия имеют очень ограниченное применение, в основном для изготовления литых роторов электрических двигателей. Они имеют чистоту от 99,00 до 99,70 %.

Химический состав сплава и его характеристики

Сплав АД31 — это алюминий, легированный кремнием, марганцем, магнием, титаном и хромом. Доля Al составляет от 97,65 до 99,35%, примесей не более 2,35%. Химический состав регулируется нормативами ГОСТа 4782-97.

Введение в состав металла легирующих компонентов позволяет влиять на физико-механические свойства конечного продукта. Железо предотвращает растрескивание изделий при термообработке. Марганец повышает стойкость к воздействию агрессивных сред, обеспечивает сохранение прочности при механических нагрузках. Дополнительная термическая обработка придает металлоизделиям повышенную прочность и твердость. Термоупрочненный сплав маркируют АД31Т1.

Алюминиевые сплавы АД31 и АД31Т1 отличает хорошая свариваемость, устойчивость к воздействию химически активных сред, морской воды, органических соединений. Продукция из термоупрочняемого авиалия хорошо поддается глубокой вытяжке, гибке, штамповке, резке.

Технический алюминий

Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью.

Марки технического алюминия отличаются и хорошей тепло- и электропроводностью. В их молекулярной решетке практически отсутствуют примеси, которые рассеивают поток электронов. Благодаря этим свойствам материал активно используется в приборостроении, при производстве нагревательного и теплообменного оборудования, предметов освещения.

Особенности обработки

Марка В95 тяжело проходит обработку на металлорежущих станках, причиной тому его высокая твердость. В отличие от многих других материалов, изготовленных на основе алюминия, этот не может быть сварен с помощью аргонной сварки, но вместе с тем он хорошо переносит контактную сварку.

В целях повышения пластичности В95 применяют разные способы термообработки. Сплав этого класса, который прошел искусственное старение для получения максимальной твердости маркируют В95Т1.

После обработки, поверхность плакируют. То есть наносят слой чистого технического алюминия. Таким образом, решается проблема невысокой коррозионной стойкости В95.

Область применения

Широкая область применения Д16Т связана с его основными эксплуатационными качествами. Стоит учитывать, что сложности, возникающие в процессе производства, существенно повышают стоимость этого сплава. Несмотря на распространение алюминия, дюралюминий применяется лишь в случае, когда это требуется. Сплав Д16Т выпускается в следующих видах:

  1. Листы.
  2. Уголки.
  3. Прутки.
  4. Плиты.


Колесные проставки из сплава Д16Т


Накладка газовой трубы из Д16Т

Стоит учитывать, что сплав крайне редко поставляется на производственную площадку в чистом виде. Для повышения основных эксплуатационных качеств зачастую проводится химикотермическая обработка. Заготовки применяются для получения следующих изделий:

  1. Элементы обшивки.
  2. Каркасы.
  3. Тяги.
  4. Лонжероны.

Форма выпуска:

  1. В чистом виде. Как ранее было отмечено, в этой форме заготовки встречаются редко.
  2. В закаленном или естественно состаренном состоянии.
  3. После искусственного состаривания.
  4. Плакированные.
  5. Отоженные.

Очень большое распространение получили заклепки, изготавливаемые из рассматриваемого материала. Это связано с тем, что заклепки из Д16Т характеризуются высоким показателем сопротивления на срез.

Термическая обработка позволяет существенно увеличить основные эксплуатационные качества. По установленным стандартам подобного рода улучшение позволяет повысить устойчивость металла к воздействию высокой температуры. К примеру, крепежные элементы могут выдерживать температуру от 120 до 230 градусов Цельсия. Применяется сплав и в машиностроительной сфере при создании кузова.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Литейные алюминиевые сплавы

Технологии получения деталей и заготовок путем литья применяются на протяжении многих лет. Они хороши тем, что позволяют получать самые различные формы, которые могут иметь сложные поверхности. Сплавы на основе алюминия могут переходить в текучее состояние при более низких температурах, чем другие металлы. Именно поэтому процесс изготовления различных деталей существенно упрощается.

Среди других особенностей материала данной группы отметим:

  1. После формирования устойчивой кристаллической решетки полученную поверхность достаточно легко подвергать механической обработке.
  2. Получаемые заготовки рассматриваемым методом также хорошо поддаются обработке методом давления.

Литейные алюминиевые сплавы получили весьма широкое применение в различных отраслях промышленности, особенно тех, в которых нужно получать сложные корпусные детали. За счет литья по форме существенно упрощается дальнейшая механическая обработка.

Литейные алюминиевые сплавы

Основные требования, предъявляемые к литейным алюминиевым сплавом – сочетание хороших литейных свойств и оптимальных физико-механических качеств. Данную группу можно разделить на:

  1. Конструкционные герметичные. Этот тип материала характеризуется высокими литейными качествами, а также удовлетворительной коррозионной стойкостью и механической обрабатываемостью. Как правило, получаемые заготовки и изделия в дальнейшем не подвергаются термической обработке для повышения эксплуатационных качеств. Для изготовления средних и крупных деталей, которые зачастую представлены корпусами, достаточно часто проводится легирование состава.
  2. Высокопрочные и жаропрочные. Довольно часто подобный состав дополнительно легируется титаном, за счет чего обеспечиваются высокие эксплуатационные качества. Жаропрочность выдерживается в пределах 350 градусов Цельсия. Для упрочнения состава проводится закалка на протяжении достаточно длительного периода. Довольно часто подобный сплав применяется при получении крупногабаритных заготовок самого различного предназначения.
  3. Коррозионностойкие составы характеризуются тем, что обладают высокой коррозионной стойкостью при эксплуатации в самых различных агрессивных средах. Структура хорошо подается обработке методом резания и сваривания. Однако стоит учитывать относительно невысокие литейные свойства.

Последняя разновидность алюминиевых сплавов достаточно часто применяется при изготовлении деталей, которые будут эксплуатироваться при воздействии морской воды.

Сферы применения

Из дюралюминия делают листы, прутки, плиты, проволоку. Эти материалы используют для изготовления различных деталей.

Основные области применения:

  1. Авиатехника. Важным направлением является применение дюраля в самолетостроении и постройке других летательных аппаратов — космических ракет, дирижаблей. Из этого состава делают обшивку, детали рулевой тяги, силовые элементы и т.п.
  2. Строительство. В этой отрасли широко используются листы, трубы, уголки и пр.
  3. Автомобилестроение. Из сплава изготавливают кузова, радиаторы и другие детали.
  4. Буровая промышленность. Из дюралюминия делают круги, буры и пр.

Дюралюминий часто используется в быту, например, в виде фольги для выпечки или обертки конфет.

Деформируемые алюминиевые сплавы

Довольно большое распространение деформируемых алюминиевых сплавов можно связать с тем, что при их применении процесс производства различных изделий существенно упрощается. Область применения следующая:

  1. Прокат.
  2. Штамповка.
  3. Ковка.
  4. Прессовка.
  5. Экструзия.

Деформируемые алюминиевые сплавы

В результате получаются различные заготовки или уже практически готовые детали с исключительными эксплуатационными качествами. После получения требующейся формы проводится отжиг, закалка или старение, которые позволяют существенно повысить показатель прочности. Данный типа алюминия применяют для получения труб, листа или профиля.

Литейные алюминиевые сплавы

Технологии получения деталей и заготовок путем литья применяются на протяжении многих лет. Они хороши тем, что позволяют получать самые различные формы, которые могут иметь сложные поверхности. Сплавы на основе алюминия могут переходить в текучее состояние при более низких температурах, чем другие металлы. Именно поэтому процесс изготовления различных деталей существенно упрощается.

Среди других особенностей материала данной группы отметим:

  1. После формирования устойчивой кристаллической решетки полученную поверхность достаточно легко подвергать механической обработке.
  2. Получаемые заготовки рассматриваемым методом также хорошо поддаются обработке методом давления.

Литейные алюминиевые сплавы получили весьма широкое применение в различных отраслях промышленности, особенно тех, в которых нужно получать сложные корпусные детали. За счет литья по форме существенно упрощается дальнейшая механическая обработка.

Литейные алюминиевые сплавы

Основные требования, предъявляемые к литейным алюминиевым сплавом – сочетание хороших литейных свойств и оптимальных физико-механических качеств. Данную группу можно разделить на:

  1. Конструкционные герметичные. Этот тип материала характеризуется высокими литейными качествами, а также удовлетворительной коррозионной стойкостью и механической обрабатываемостью. Как правило, получаемые заготовки и изделия в дальнейшем не подвергаются термической обработке для повышения эксплуатационных качеств. Для изготовления средних и крупных деталей, которые зачастую представлены корпусами, достаточно часто проводится легирование состава.
  2. Высокопрочные и жаропрочные. Довольно часто подобный состав дополнительно легируется титаном, за счет чего обеспечиваются высокие эксплуатационные качества. Жаропрочность выдерживается в пределах 350 градусов Цельсия. Для упрочнения состава проводится закалка на протяжении достаточно длительного периода. Довольно часто подобный сплав применяется при получении крупногабаритных заготовок самого различного предназначения.
  3. Коррозионностойкие составы характеризуются тем, что обладают высокой коррозионной стойкостью при эксплуатации в самых различных агрессивных средах. Структура хорошо подается обработке методом резания и сваривания. Однако стоит учитывать относительно невысокие литейные свойства.

Последняя разновидность алюминиевых сплавов достаточно часто применяется при изготовлении деталей, которые будут эксплуатироваться при воздействии морской воды.

Основные группы алюминиевых сплавов и их свойства

Для работы с алюминием и его соединениями необходимо ознакомиться со свойствами металла, поскольку они существенно влияют на сферу применения деталей и характеристики материала. Ранее мы говорили о классификации сплавов алюминия.

Далее расскажем о наиболее распространенных типах металла и их свойствах.

Сплавы с алюминием, медью и кремнием.

Соединение также известно под названием алькусин. Сплавы, в которых присутствуют медь и кремний, используются для изготовления деталей промышленного оборудования. Отличные технические свойства позволяют эксплуатировать их в условиях постоянной нагрузки.

Алюминиево-медные сплавы.

Технические характеристики составов, в которых присутствует медь, сравнимы с низкоуглеродистыми сталями. Основной недостаток заключается в плохой коррозионной устойчивости. Детали покрываются защитным составом, предохраняющим от негативного воздействия окружающей среды. Для улучшения качеств материала используют легирующие компоненты (марганец, железо, магний и кремний).

Алюминиево-кремниевые сплавы.

Эти соединения носят название силумина и служат для производства декоративных элементов. Для повышения характеристик алюминиевых сплавов используют натрий и литий.

Алюминиево-магниевые сплавы.

Присутствие в составе магния повышает прочностные характеристики материала, а также облегчает процесс сварки. Содержание магния не должно превышать 6 %. Более высокий процент снизит антикоррозионные свойства соединения. Для повышения прочности без снижения коррозионной устойчивости в составы добавляют марганец, ванадий, хром или кремний. Каждый дополнительный процент магния улучшает прочность на 30 МПа.

Алюминиево-марганцевые сплавы.

Для повышения устойчивости к коррозии в состав соединения добавляют марганец. Благодаря ему повышаются прочность и свариваемость материала. Кроме марганца в состав добавляют железо и кремний.

Сплавы с алюминием, цинком и магнием.

Высокими прочностными характеристиками, а также простотой обработки отличаются алюминиевые сплавы с магнием и цинком. Для улучшения свойств материала его подвергают термической обработке. Недостатком таких соединений является низкая антикоррозионная устойчивость. Для исправления этого минуса используют легирующий компонент – медь.

Авиаль.

В этих сплавах, помимо алюминия, содержатся магний и кремний. Соединения отличаются высокой пластичностью, коррозионной устойчивостью.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Работая с этим металлом и смесями на его основе, важно знать свойства алюминиевых сплавов. От этого будет зависеть область применения материала и его характеристики

Классификация алюминиевых сплавов приведена выше. Ниже будут описаны самые популярные виды сплавов и их свойства.

Алюминиево-магниевые сплавы

Сплавы алюминия с магнием обладают высоким показателем прочности и хорошо поддаются сварке. Дополнительного компонента в состав не добавляют более 6%. В противном случае ухудшается устойчивость материала к коррозийным процессам. Чтобы дополнительно увеличить показатель прочности без ущерба защите от коррозии, алюминиевые сплавы разбавляются марганцем, ванадием, хромом или кремнием. От каждого процента магния, добавленного в состав, показатель прочности изменяется на 30 Мпа.

Алюминиево-марганцевые сплавы

Чтобы увеличить показатель коррозийной устойчивости, алюминиевый сплав разбавляется марганцем. Этот компонент дополнительно увеличивает прочность изделия и показатель свариваемости. Компоненты, которые могут добавляться в такие составы — железо и кремний.

Сплавы с алюминием, медью и кремнием

Второе название этого материала — алькусин. Марки алюминия с добавлением меди и кремния идут на производство деталей для промышленного оборудования. Благодаря высоким техническим характеристикам они выдерживают постоянные нагрузки.

Алюминиево-медные сплавы

Смеси меди с алюминием по техническим характеристикам можно сравнить с низкоуглеродистыми сталями. Главный минус этого материала — подверженность к развитию коррозийных процессов. На детали наносится защитное покрытие, которое сохраняет их от воздействия факторов окружающей среды. Состав алюминия и меди улучшают с помощью легирующий добавок. Ими является марганец, железо, магний и кремний.

Алюминиево-медные сплавы

Алюминиево-кремниевые сплавы

Называются такие смеси силумином. Дополнительно эти сплавы улучшаются с помощью натрия и лития. Чаще всего, силумин используется для изготовления декоративных изделий.

Сплавы с алюминием, цинком и магнием

Сплавы на основе алюминия, в которые добавляется магний и цинк, легко обрабатываются и имеют высокий показатель прочности. Увеличить характеристики материала можно проведя термическую обработку. Недостаток смеси трёх металлов — низкая коррозийная устойчивость. Исправить этот недостаток можно с помощью легирующей медной примеси.

Авиаль

В состав этих сплавов входит алюминий, магний и кремний. Отличительные особенности — высокий показатель пластичности, хорошая устойчивость к коррозийным процессам.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: