Титан и его характеристики

История

Открытие диоксида титана (TiO2) сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 году немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз: французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году швед Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Титан не находил промышленного применения, пока люксембуржец Г. Кролл (англ.)русск. в 1940 году не запатентовал простой магниетермический метод восстановления металлического титана из тетрахлорида; этот метод (процесс Кролла (англ.)русск.) до настоящего времени остаётся одним из основных в промышленном получении титана.

Классификация титановых сплавов, виды и характеристика

Характерной особенностью титана является наличие двух аллотропических модификаций, то есть состояний, имеющих одинаковый химический состав

Таким образом, строение и свойства у титана, самого важного элемента, входящего в титановые сплавы, может отличаться

Согласно общепринятой классификации, титановые сплавы делятся на группы:

  1. высокопрочные конструкционные,
  2. жаропрочные,
  3. химические.

Некоторые виды технического титана, необходимого для металлургической промышленности, отличаются разным уровнем прочности. Этот показатель напрямую зависит от содержания таких примесей, как азот, кремний, железо, углерод. При этом увеличивающаяся прочность сплава, достигающаяся добавлением большего количества алюминия, обычно обозначает пропорционально уменьшающуюся пластичность. Вместе с этим титан, содержащий алюминиевые добавки, становится более дешёвым, то есть более экономически выгодным материалом.

Группа конструкционного титана объединяет в себе титановые сплавы, которые обладают свойствами высокой коррозийной стойкости к внешним воздействиям, могут с лёгкостью свариваться между собой, а также с некоторыми другими металлическими изделиями и деталями. Сейчас уже создан специальный титан-сплав, который называется морским и применяется в солёной морской воде для производства прочных глубоководных агрегатов. Он обладает не только высокой физической и усталостной прочностью, но также и хладостойкостью. Благодаря особенностям состава и производства, данный тип сплавов является металлопродуктом с неограниченным сроком применения.

Применение титана для изготовления спортивного инвентаря

Причина популярности использования титана в спортивном инвентаре проста — он позволяет получить превосходящее любой другой металл соотношение веса и прочности. Использование титана в велосипедах началось примерно 25-30 лет назад и было первым применением титана в спортивном инвентаре. В основном используются трубы, в том числе поставляемые ООО «Вариант», из сплава Gr.9 Тi3Аl-2.5V (АSТМ B338 Grade 9). Другие части производимые из титановых сплавов включают в себя тормоза, звёздочки и пружины сидений. Использование титана в производстве клюшек для гольфа впервые началось в конце 80-х — самом начале 90-х годов производителями клюшек в Японии. До 1994-1995 годов это применение титана было практически неизвестно в США и в Европе. Ситуация изменилась, когда компания Callaway представила на рынок свою титановую клюшку, производимую компанией Ruger Titanium и названную Great Big Bertha. В связи с очевидными преимуществами и с помощью хорошо продуманного компанией Callaway маркетинга, титановые клюшки моментально приобрели огромную популярность. В течение короткого периода времени титановые клюшки прошли путь от эксклюзивного и дорогого инвентаря небольшой группы игроков до широкого использования большинством гольфистов (по прежнему оставаясь более дорогими по сравнению со стальными клюшками).

Титан применяют в изготовлении рам для велосипедов. В США тремя наиболее часто используемыми в велосипедной промышленности сортами титана 3-2.5 являются: — сорт AMS 105, то же самое вещество соответствует наименованию 747. Этот материал отвечает всем требованиям стандарта AMS (Аэрокосмическая спецификация материалов) для гидравлических труб. Теоретически, покупка труб AMS 105 непосредственно у производителя дает неограниченный выбор диаметров и толщины стенок трубы. В действительности, существует много ограничений на минимальную партию заказа и в связи с этим, многие производители велосипедных рам, предпочитают заказывать титановые трубы у . Покупатели иногда добавляют или изменяют стандартные спецификации труб AMS. Трубы MTS325 фирмы Merlin отличаются от труб AMS тем, что имеют более строгие допущения для структуры поверхности. Трубы фирмы Merlin также превосходят трубы AMS по минимальной прочности на разрыв при растяжении и пределу текучести. — «Спортивный сорт» Grade 9. Трубы из титана Gr.9 спортивного сорта дешевле, так как они подвергаются меньшему числу шагов обработки, что позволяет снизить цену. Однако, сокращение цены негативно сказывается на формовке труб и структуре поверхности, как изнутри, так и снаружи.

Трубы для гоночных велосипедов и другие детали изготавливают из сплава АSТМ B338 Grade 9 (Тi3Аl-2.5V), поставляемого ООО «Вариант». На удивление, значительное количество титанового листа используется при производстве ножей для подводного плавания. Большинство производителей используют титановые листы ВТ6 (сплав Тi6Аl-4V или Grade 5, или Gr.5), но этот сплав не обеспечивает долговечность кромки лезвия, как другие более прочные сплавы. Некоторые производители переключаются на использование сплава ВТ23. Литые титановые подковы дают значительное уменьшение веса по сравнению со стальными, при этом обеспечивая необходимую прочность. К сожалению, это применение титана не вошло в жизнь, потому что титановые подковы искрили и пугали лошадей. Немногие согласятся использовать титановые подковы после первых неудачных опытов. Компания Titanium Beach, расположенная в Ньюпорт Бич, Калифорния (Newport Beach, Саlifornia), разработала лезвия для коньков из сплава Тi6Аl-4V Gr.5 (Grade 5 или ВТ6). К сожалению, здесь опять проблема долговечности кромки лезвий. Мы думаем, что у этого продукта есть шанс на жизнь при условии использования производителями более прочных сплавов, таких как 15-3-3-3 или ВТ-23. Титан очень широко используется в альпинизме и туризме, практически для всех предметов, которые альпинисты и туристы несут в своих рюкзаках: бутылки, чашки, наборы для приготовления пищи, столовая посуда, в основном сделанные из коммерчески чистого титана — листов, прутков и труб ВТ1-00 (Grade 1) и ВТ1-0 (Grade 2). Другими примерами альпинистского и туристского снаряжения являются компактные печки, стойки и крепления палаток, ледорубы и ледобуры. Производители вооружения недавно начали производить титановые пистолеты как для спортивной стрельбы, так и для правоохранительных органов.

Основные свойства титана

  • Цвет: серебристо-белый
  • Плотность: 4,54 г/см³
  • Температура плавления: 1668°С
  • Температура кипения: 3260°С
  • Теплопроводность: 21.9 Вт/(м·К)
  • Атомный номер: 22
  • Атомная масса: 47,9
  • Удельная теплота плавления: 358 кДж/кг
  • Удельная теплоемкость (при 20°С): 0,54 кДж/(кг.°С)
  • Модуль упругости: 112 ГПа

Механические свойства титана в большой степени зависят от содержания примесей, особенно Н, О, N и С, образующих с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое содержание кислорода, азота, углерода повышает твердость и прочность, но при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшается свариваемость, способность к пайке и штампуемость. Титан обладает высокими прочностью и удельной прочностью в условиях глубокого холода.

Технический титан хорошо обрабатывается давлением при 20-25°С и повышенных температурах. Из него изготовляют все виды прессованного и катаного полуфабриката (листы, трубы, проволоку, поковки и др.). Ковку проводят при температуре 1000-750°С, горячую прокатку – на 100°С ниже температуры ковки. Горячей прокаткой получают листы толщиной более 6 мм, листы меньшей толщины изготовляют холодной прокаткой или с нагревом до 650-700°С. Температура прессования 950-1000°С. Титан хорошо сваривается аргонодуговой и всеми видами контактной сварки. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90% прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, что приводит к его быстрому износу. Для обработки титана требуется инструмент из быстрорежущей стали и твёрдых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. Недостатком титана является также низкая антифрикционность.

Титановые сплавы

Достоинством титановых сплавов по сравнению с титаном являются более высокие прочность и жаропрочность при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности. Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении. Самым распространённым в мире титановым сплавом является сплав Ti-6Al-4V, который в российской классификации имеет обозначение ВТ6. Для изготовления деталей методами порошковой технологии используют сплавы ВТ5, ВТ5-1, ОТ4, ВТЗ-1 и другие.

По технологии изготовления титановые сплавы подразделяются на деформируемые, литейные и порошковые. По механическим свойствам титановые сплавы подразделяются на сплавы нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности. По способности упрочняться с помощью термической обработки они делятся на упрочняемые и неупрочняемые термической обработкой; по структуре в отожженном состоянии они классифицируются на а-, псевдо-а, а + р, псевдо-р и р-сплавы.

Применение титановых сплавов

  • В авиастроении, ракетостроении: каркасные детали, обшивка, топливные баки, детали реактивных двигателей, диски и лопатки компрессоров, детали воздухозаборника, детали корпусов ракетных двигателей второй и третьей ступени и т.д.
  • В судостроении: обшивка корпусов судов и подводных лодок, сварные трубы, гребные винты, детали насосов и др.
  • В химической промышленности: реакторы для агрессивных сред, насосы, змеевики, центрифуги и др.
  • В гальванотехнике: ванны для хромирования, анодные корзины, теплообменники, трубопроводы, подвески и др.
  • В газовой и нефтяной промышленности: фильтры, седла клапанов, резервуары, отстойники и др.
  • В криогенной технике: детали холодильников, насосов компрессоров, теплообменники и др.
  • В пищевой промышленности: сепараторы, холодильники, ёмкости для продуктов, цистерны и др.
  • В медицинской промышленности: инструмент, наружные и внутренние протезы, внутрикостные фиксаторы, зажимы и др.

Марки и классы титана

Титановая губка
ТГ-100 ТГ-110 ТГ-120 ТГ-130 ТГ-150
ТГ-90 ТГ-Тв      
Титан технический
ВТ1-0 ВТ1-00 ВТ1-1
Титановый литейный сплав
ВТ14Л ВТ1Л ВТ20Л ВТ21Л ВТ3-1Л
ВТ5Л ВТ6Л ВТ9Л    
Титановый деформируемый сплав
АТ-6 ВТ14 ВТ15 ВТ16 ВТ20
ВТ22 ВТ23 ВТ3-1 ВТ5 ВТ5-1
ВТ6 ВТ6С ВТ9 ОТ4 ОТ4-0
ОТ4-1 ПТ3В ПТ7М ТС6  

Температура перехода

Кристаллическая структура титана при температуре и давлении окружающей среды представляет собой плотноупакованную гексагональную α-фазу с отношением ас / а 1,587. При температуре около 890 ° C титан подвергается аллотропному превращению в объемно-центрированную кубическую β-фазу, которая остается стабильной до температуры плавления.

Некоторые легирующие элементы, называемые альфа-стабилизаторами, повышают температуру перехода из альфа в бета , в то время как другие (бета-стабилизаторы) понижают температуру перехода. Алюминий, галлий , германий , углерод , кислород и азот являются альфа-стабилизаторами. Бета-стабилизаторами являются молибден , ванадий , тантал , ниобий , марганец , железо , хром , кобальт , никель , медь и кремний .

История открытия металла

Всё началось в 1791 году, когда, независимо друг от друга, одновременно У. Грегор (Англия) и М. Г. Клапрот (Германия) получили двуокись титана, но не сумели выделить из неё чистое вещество. Минералог и, по совместительству, сельский священник Грегор изучал чёрный железистый песок, найденный в окрестностях своего прихода. Результатом стало извлечение соединения титана — блестящих крупиц, которые названием «менакин» (от минерала менаканит) увековечили родные места англичанина.

Примерно в это же время химик Клапрот, изучая красные пески, привезённые из Венгрии, нашёл в минерале рутиле новое вещество и назвал его «титан». А, спустя несколько лет, доказал, что рутил и менакеновая земля — одинаковые соединения. В 1825 году шведским химиком Берцелиусом был получен первый образец металлического титана, но это не позволило продвинуться в исследовании свойств, так как примеси делали образец хрупким и неподходящим для механической обработки.

Только в 1925 году голландские химики ван Аркел и де Бур, применив термическое разложение иодида титана, не нашедшее широкого использования, получили вещество с 99,9% чистотой. Такой металл обладал пластичностью, его можно было раскатывать в листы, проволоку и фольгу

Это позволило начать полномасштабное изучение физических и химических свойств, привлечь внимание инженеров и строителей, наметить сферы применения. А уже в 1940 году появился кролловский процесс восстановления четырёххлористого титана магнием, успешно используемый и до сих пор

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия. Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами. Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Добыча титана – дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество – тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап – разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры – +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Свойства и применение титановых сплавов

Ниже представлен обзор наиболее часто встречающихся титановых сплавов, которые делятся на классы, их свойства, преимущества и промышленные применения.

7 класс

Класс 7 механически и физически эквивалентен классу 2 чистого титана, за исключением добавления промежуточного элемента палладия, что делает его сплавом. Он обладает превосходной свариваемостью и эластичностью, наиболее коррозионной стойкостью из всех сплавов этого типа.

Класс 7 используется в химических процессах и компонентах производственного оборудования.

11 класс

Класс 11 очень похож на класс 1, за исключением добавления палладия для повышения коррозионной стойкости, что делает его сплавом.

Другие полезные свойства включают оптимальную пластичность, прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать особенно в тех случаях, когда коррозия вызывает проблемы:

  • химическая обработка;
  • производство хлоратов;
  • опреснение;
  • морские применения.

Ti 6Al-4V, класс 5

Сплав Ti 6Al-4V, или титан 5 класса, наиболее часто используется. На его долю приходится 50% общего потребления титана во всём мире.

Удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V может подвергаться термообработке для повышения его прочности. Этот сплав обладает высокой прочностью при малой массе.

Это лучший сплав для использования в нескольких отраслях промышленности, таких как аэрокосмическая, медицинская, морская и химическая перерабатывающая промышленность. Его можно использовать при создании:

  • авиационных турбин;
  • компонентов двигателя;
  • конструктивных элементов самолёта;
  • аэрокосмических крепёжных изделий;
  • высокопроизводительных автоматических деталей;
  • спортивного оборудования.

Ti 6AL-4V ELI, класс 23

Класс 23 — хирургический титан. Сплав Ti 6AL-4V ELI, или класс 23, является версией более высокой чистоты Ti 6Al-4V. Он может быть изготовлен из рулонов, нитей, проводов или плоских проводов. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, малой массы, хорошей коррозионной стойкости и высокой вязкости. Он обладает превосходной устойчивостью к повреждениям.

Он может использоваться в биомедицинских применениях, таких как имплантируемые компоненты из-за его биосовместимости, хорошей усталостной прочности. Его также можно использовать в хирургических процедурах для изготовления таких конструкций:

  • ортопедические штифты и винты;
  • зажимы для лигатуры;
  • хирургические скобы;
  • пружины;
  • ортодонтические приборы;
  • криогенные сосуды;
  • устройства фиксации кости.

12 класс

Титан класса 12 обладает отличной высококачественной свариваемостью. Это высокопрочный сплав, который обеспечивает хорошую прочность при высоких температурах. Титан класса 12 обладает характеристиками, подобными нержавеющим сталям серии 300.

Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для производственного оборудования. Класс 12 можно использовать в следующих отраслях:

  • теплообменники;
  • гидрометаллургические применения;
  • химическое производство с повышенной температурой;
  • морские и воздушные компоненты.

Ti 5Al-2,5Sn

Ti 5Al-2,5Sn — это сплав, который может обеспечить хорошую свариваемость с устойчивостью. Он также обладает высокой температурной стабильностью и высокой прочностью.

Ti 5Al-2,5Sn в основном используется в авиационной сфере, а также в криогенных установках.

Показания к применению титана для организма человека

Показания к применению титана, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Область применения

Титановый сплав, который имеет высокую коррозионную стойкость, высокую удельную прочность и хорошую термостойкость, используется для различных частей космического корабля, включая наружную оболочку топливного бака и крылья. Сочетая легкий вес с высокой прочностью, титан помогает усилить планеры и повысить производительность реактивных двигателей. В случае космического челнока, титан используется для многих критических частей, включая наружные панели топливного бака и детали крыла.

В самолетах используется большое количество титанового сплава, потому что он легкий и чрезвычайно прочный при высоких температурах. ТС применяется для укрепления каркасной конструкции и способствует техническому прогрессу реактивных двигателей.

Титановые сплавы применение:

  • Установки для сжиженного природного газа;
  • установки опреснения морской воды;
  • нефтеперерабатывающие заводы;
  • атомные электростанции;
  • автоцистерны для химических реагентов, потому что ТС легок, устойчив к коррозии, и чрезвычайно сильный;
  • теплообменники, которые используются в экстремальных условиях высокой температуры и высокого давления;
  • биомедицинские приложения.

Огромными преимуществами титана являются его высокое отношение прочности к весу и антикоррозионность. В сочетании с нетоксичным состоянием и способностью эффективно противостоять коррозии от биологических жидкостей титан стал базовым металлом для имплантата в области медицины, со сроком службы более 20 лет.

Еще одним преимуществом Ti для применения в медицинской отрасли является его неферромагнитное свойство, позволяющее безопасно обследовать больных с применением МРТ и ЯМР.

Титановый протез сустава

Общая характеристика

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду напоминает сталь. Очень распространен в природе. Его содержание в земной коре выше, чем меди, свинца и цинка.

Относительная молекулярная масса вещества показывает, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода. Титан в свободном состоянии существует в виде одноатомных молекул Ti. Значения его атомной и молекулярной масс совпадают. Они равны 47,867.

К основным механическим свойствам титановых сплавов относят:

  1. Стойкость к коррозийным процессам. Превосходит по этому свойству стали. Не корродирует в воздухе, морской воде, влажном хлоре и других технологических растворах и реагентах, поэтому материал незаменим в химической, целлюлозно-бумажной, нефтяной промышленности.
  2. Легковесность. Востребован там, где нужно очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны — авиа-, ракетостроение.
  3. Высокую удельную прочность. Показатель примерно в 2 раза выше железа и в 6 раз — алюминия. При растяжении предел прочности — 300–450 МПа, но его можно увеличить до 2 000 МПа посредством закалки, старения и примеси некоторых элементов. При этом материал сохраняет прочностные характеристики даже под воздействием низких температур.
  4. Парамагнитность. В магнитном поле он не намагничивается, но и не выталкивается из него.
  5. Низкую теплопроводность. При комнатной температуре в среднем составляет — 18 Вт/(м·град). По мере нагревания показатель увеличивается. Температурное расширение в 3 раза меньше железа и в 12 алюминия.
  6. Удовлетворительную технологическую пластичность некоторых сплавов. В горячем состоянии получают различные полуфабрикаты — листы, прутки, штамповки, профили и др. При этом механическая обработка вызывает много сложностей.

Таким образом, металл хорошо сочетает прочность и пластичность, но большинство механических свойств определяет содержание примесей. На формирование структуры решающее значение оказывают полиморфные превращения. Это играет важную роль при термической обработке деталей в соответствии с требованиями чертежа.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2 Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением. Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Получение

Брусок кристаллического титана (чистота 99,995 %, вес 283 г, длина 14 см, диаметр 25 мм), изготовленный на иодидным методом ван Аркеля и де Бура Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

TiO2+2C+2Cl2→TiCl4+2CO{\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4+2Mg→2MgCl2+Ti{\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2CaO→2Ca+O2{\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O2+C→CO2{\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}} TiO2+2Ca→Ti+2CaO{\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: