ТОП 6 способов как почистить томпак и удалить окись с поверхности изделий из томпака
Хотя латунный сплав любой марки обладает высокой стойкостью к коррозионному разрушению, его даже называют «вечным металлом», со временем на поверхности изделий из него образуется окисная пленка. Она темнеет, поверхность становится тусклой. Если изделие часто контактирует с водой, то процесс окисления идет особенно активно. Для удаления окислов, возвращения изделию первоначального вида, придания красоты и сияния, есть несколько эффективных способов.
Прежде, чем воспользоваться одним из способов, необходимо убедиться, что изделие не покрыто латунным сплавом, а изготовлено из него полностью. Для такой проверки достаточно будет воспользоваться магнитом. Томпак и полутомпак — немагнитные сплавы, поэтому магнит не будет притягиваться к изделию. Если изделие только покрыто сплавом, при очистке не нужно использовать абразивные вещества, чтобы не повредить поверхностный слой.
Первый способ
Готовим раствор, состоящий из 3 л воды, столовой ложки с небольшой горкой соли (25 г) и стакана обычного уксуса. В этот раствор следует поместить изделие и прокипятить его до полного очищения поверхности. По мере необходимости, нужно подливать воду до первоначального объема. После очистки предмет промывают проточной водой и высушивают.
Второй способ
Предмет, который необходимо очистить, аккуратно помещается на несколько часов в раствор, состоящий из 10 л воды и 200 мл щавелевой кислоты. Для его изготовления необходимо использовать пластиковую тару. Используют такой объем раствора для очистки крупных изделий. При очистке небольших предметов и необходимости использования меньшего количества раствора, можно пропорционально уменьшить объем компонентов. Этот способ потенциально опасен для кожи и глаз, поэтому в случае его применения необходимо использовать резиновые перчатки и респиратор в качестве мер индивидуальной защиты. После очистки изделие необходимо тщательно промыть под струей воды и натереть сухой ветошью.
Третий
Необходим раствор, содержащий воду и мыло. Также нужен ацетон. В ацетоне смачивается ватный тампон или диск, которым тщательно протирается изделие. После такой обработки его промывают мыльной водой до полного восстановления первоначального блеска поверхности и обязательно протирают насухо.
Четвертый способ
Наиболее простой — очищаемую поверхность изделия протирают половинкой лимона или лайма, которую предварительно обмакивают в поваренную соль. После такой очистки поверхность можно отполировать обычной зубной пастой и хлопковой тканью, как щадящим абразивным полирующим составом. Затем нужно промыть предмет в проточной воде и насухо вытереть.
Пятый способ
Нужно купить в торговых сетях чистящее средство для цветных металлов. Чаще всего оно продается в виде тюбиков с кремом или пастой, и применить его в строгом соответствии с инструкцией.
Шестой способ
Отполировать изделие с помощью пасты ГОИ. Полностью это средство называется паста Государственного Оптического Института и была разработана около 80 лет назад. Для очистки и полировки изделия пасту нужно нанести на мягкую ткань. Наносится несколько капель веретенного масла для лучшего растворения пасты, и затем медленными движениями изделие полируется. После полировки вещь промывается для обезжиривания и насухо вытирается.
Основные свойства сплавов
Сплавами с антифрикционным эффектом заливают вкладыши подшипников скольжения. Требования к ним устанавливаются в зависимости от условий, в которых работают детали. Материал, из которого они вырабатываются, обязан располагать следующими свойствами антифрикционных сплавов:
- достаточной пластичностью, чтобы иметь способность прирабатываться к вращающейся поверхности и твердостью, необходимой для вкладыша, но не истирающей вал;
- рабочая поверхность должна способствовать удержанию смазочного материала;
- небольшим коэффициентом трения с материалом, из которого изготовлен вал вращения;
- невысокой температурой плавления.
Область применения
Пермаллой применяется при создании сердечников для электромагнитных катушек. Этот элемент электротехнических схем используется в трансформаторах и электроприборах для изменения характеристик электрического тока. В сердечниках из пермаллоя чаще применяются пластины-кольца, изготовленные из этого материала.
Сплав используется в звуковой аппаратуре. Там материал встречается в элементах звукозаписывающих головок. Здесь ключевым эксплуатационным свойством является изменения векторов намагниченности.
Пермаллой находит применение в различных датчиках, к примеру, материал используется в двухосном магнитометре HMC1002.
Применение[ | код]
Схема экранирования кабеля пермаллоем
Пермаллой используется для изготовления пластинок магнитопровода трансформаторов, для элементов магнитных записывающих головок. Первоначально пермаллой использовался для уменьшения искажения сигнала в телекоммуникационных кабелях как компенсатор их распределённой ёмкости.
Магниторезистивные свойства пермаллоя используют в датчиках магнитного поля. Например, в датчиках выполненных в виде микросхем. Примером такой микросхемы является HMC1002 с измерением по двум осям.
Прокат пермаллоя применяется для экранирования от магнитного поля — помещений для МРТ, электронных микроскопов и некоторых других особо чувствительных приборов. Из пермаллоя изготавливают защитные кожухи для микросхем и катушек, особо чувствительных к магнитному полю.
Технологическим недостатком применения пермаллоя является изменение его магнитных характеристик после даже незначительных деформаций. Поэтому во всех случаях применения пермаллоя обязательным является термическая обработка (отжиг) детали после её формования.
Механические, электромагнитные свойства
Пермаллой устойчив к коррозии, благодаря наличию в составе никеля, сплав окисляется меньше железа, ведь для прохождения реакции между никелем и кислородом нужна температура от 500 °C. Вдобавок материал обладает неплохой ковкостью, что позволяет изготавливать достаточно тонкие листы из этого металла, он легко поддаётся механической обработке.
Магнитные свойства пермаллоя существенно варьируются, в значительной степени определяясь химическим составом соединения. В этой категории выделяют два основных вида сплавов: низконикелевые и высоконикелевые.
Типичным представителем второй группы будет 79НМ с пропорциональным содержанием никеля 78,5–80%. Для него характерными являются малая коэрцитивная сила, сильный магнитозащитный эффект и практически отсутствующая магнитострикция. 79НМ пермаллой имеет низкую электропроводимость. Дополнительными преимуществами являются мягкость и коррозийная устойчивость. Для повышения характеристик в 79НМ добавляют фосфор, получая сплав 79НМП, отличающийся более низким коэффициентом перемагничивания и повышенной прямоугольностью гистерезисной петли.
Похожий сплав, но с немного большей долей молибдена, 5% вместо 4%, носит название суперпермаллой. При соблюдении технологии изготовления и контроле качества в нём достигается показатели относительной магнитной проницаемости µ начальное равный 100000, и µ максимальное – 1000000.
В низконикелевых пермаллоях содержание этого металла колеблется в пределах 40–50%, типичным представителем является перменорм. Коэффициент относительной магнитной проницаемости перменорма находится в диапазоне 3500–35000. Его можно повысить путём дополнительной температурной обработки и созданием текстуры на поверхности пластин. Низконикелевые пермаллои 45Н и 50Н соединяют высокую магнитную проницаемость и индукцию насыщения. По второму показателю они превосходят высоконикелевые пермаллои примерно в 1,5 раза. Сплавы 45Н и 50Н имеют высокую электропроводность и легко намагничиваются, что находит применение в высокоточных электротехнических устройствах.
О свойствах железа
Чистое железо — серебристо-серого цвета, обладает пластичностью и ковкостью. Самородные слитки, встречающиеся в природе, имеют ярко выраженный металлический блеск и значительную твердость. На высоте и электропроводность материала, он с помощью свободных электронов легко передает ток. Металл обладает средней тугоплавкостью, размягчается при температуре +1539 градусов по Цельсию и теряет ферромагнитные свойства. Это химически активный элемент. При нормальной температуре легко вступает в реакцию, а при нагревании эти свойства усиливаются. На воздухе покрывается пленкой оксида, которая мешает продолжению реакции. При попадании во влажную среду появляется ржавчина, которая уже не препятствует коррозии. Но, несмотря на это, железо и его сплавы находят широкое применение.
Примечания и ссылки
- ↑ и (de) GW Elmen и HD Arnold, « Пермаллой, новый магнитный материал с очень высокой проницаемостью », American Tel. & Телефон. , США, т. 2 п о 3,Июль 1923 г., стр. 101–111
- Магнитные затяжки присутствуют в электрических трансформаторах, магнитных экранах …
- (де) Дэвид Джайлс, Введение в магнетизм и магнитные материалы, CRC Press ,1998 г., 568 с. , стр. 354
- ↑ и (de) Аллен Грин, , История компании Atlantic Cable and Undersea Communications, FTL Design,2004 г.(по состоянию на 14 декабря 2008 г. )
- Брэгг, Л. Электричество (Лондон: G. Bell & Sons, 1943), стр. 212–213.
- (de) GW Elmen, « Магнитные сплавы железа, никеля и кобальта », American Tel. & Телефон. , США, т. 15, п о 1,Январь 1936 г., стр. 113–135
- Термическая обработка часто проводится в контролируемых магнитных полях, атмосферных условиях и при изменении температуры.
- CW Chem (ред.), Магнетизм и металлургия мягких магнитных материалов, цитируемый опус, в частности, прочтите § 1.3 Сплавы Ni-Fe главы 6 о «применении магнитных материалов» мягких материалов, с. 385-390 .
- Многие коммерческие сплавы, содержащие около 36% железа, использовались при производстве индукторов и телефонных переводчиков.
- Коммерческие сплавы, содержащие около 50% железа, в действительности имеют очень разные качества из-за прокатки и соответствующей термической обработки, которой они подверглись. Это, очевидно, оправдывает изменение названия. Филипп Робер, Материалы электротехники, Договор об электричестве под руководством Жака Нейринка, Том II, Dunod / Presses polytechniques romandes 1979, 361 страница. ( ISBN 2-04-016933-4 ) (Бордас). В частности, стр. 207-208.
Характеристика алюминия
Чтобы понимать, какие свойства имеют сплавы алюминия, нужно знать характеристики основного материала. Он представляет собой лёгкий и блестящий металл. Алюминий хорошо проводит тепло и электричество благодаря чему из него изготавливают провода и различные радиодетали. Из-за низкой температуры плавления его не используют в сильно нагревающихся конструкциях.
Сверху алюминий защищён оксидной плёнкой, которая защищает материал от разрушительного воздействия факторов окружающей среды. В природе этот металл содержится в составе горных пород. Чтобы улучшить характеристики алюминия, к нему добавляют другие материалы и получаются более качественные смеси.
Состав алюминия и его сплавов обуславливает характеристики готовых изделий. Чаще всего, к этому металлу добавляют медь, марганец и магний.
Температура плавления алюминия — 660 градусов по Цельсию. По сравнению с другими металлами это низкий показатель, который ограничивает область применения металла. Чтобы повысить его жаростойкость, к нему добавляют железо. Дополнительно в состав сплава добавляется марганец и магний. Эти компоненты повышают прочность готового состава. В итоге получается сплав известный под названием «дюралюминий».
Отдельно нужно поговорить о том, как магний влияет на характеристики сплава:
- Алюминиевый сплав с большим количеством магния будет обладать высоким показателем прочности. Однако его коррозийная устойчивость значительно снизится.
- Оптимальное количество магния в составе — 6%. Таким образом можно избежать покрытия поверхностей ржавчиной и появления трещин при активной эксплуатации.
Смесь марганца с алюминием позволяет получить материал, который невозможно обрабатывать термическим методом. Закалка не будет изменять структуру металла и его характеристики.
Чтобы добиться максимальных показателей прочности не в убыток коррозийной устойчивости, изготавливаются смеси из алюминия, цинка и магния. Особенности сплава:
- Повысить показатель прочности можно с помощью термической обработки.
- Нельзя пропускать через заготовки из этой смеси электричество. Связано это с тем, что после пропускания тока ухудшится устойчивость к коррозийным процессам.
- Чтобы повысить устойчивость к образованию и развитию коррозии, в алюминиевый сплав добавляется медь.
Также к основному материалу может добавляться железо, титан или кремний. От новых компонентов изменяется температура плавления, показатель прочности, текучесть, пластичность, электропроводность и коррозийная устойчивость.
Плавление алюминия
Электрические и магнитные свойства[ | код]
Для типичного соотношения никеля и железа в сплаве 81 % и 19 % соответственно, пермаллой обладает гранецентрированной кубической решёткой (ГЦК) кубической магнитной анизотропией, коэффициенты которой близки к нулю. В тонких плёнках поле анизотропии, определяемое как поле, необходимое для поворота намагниченности в направлении тяжелой оси не превышает 10 Э. В некоторых случаях одноосную анизотропию создают легированием пермалоя кобальтом (например, Ni65Fe15Co20). Одноосную анизотропию в плёнках можно также получить электроосаждением в магнитном поле 0,5 кЭ (40 кА/м). Отдельное подавление магнитной анизотропии (но не магнитострикции) возможно в аморфных формах пермаллоев с использованием бора (например, Ni40Fe40B20).
Отличительной особенностью Ni81Fe19 является также близкий к нулю коэффициент магнитострикции. Намагниченность насыщения пермаллоя составляет величину порядка 104 Гс (1 Тл).
Удельное электрическое сопротивление пермаллоя составляет 2⋅10−5 Ом·см, а магнеторезистивный коэффициент лежит в пределах от 2 % до 4 % (2 % для полей порядка 3,75 Э, или 300 А/м). В частности, проводимость электронов с основным направлением спинов превышает проводимость для неосновного направления в шесть раз.
Зависимость точки Кюри и намагниченности насыщения от доли никеля в пермаллое
Трудности сварки алюминия и его сплавов следующие.
1. Наличие и возможность образования тугоплавкого окисла Аl2O3 (Тпл = 2050°С) с плотностью больше, чем у алюминия, затрудняет сплавление кромок соединения и способствует загрязнению металла шва частичками этой пленки. Перед сваркой для удаления пленки следует очищать поверхности кромок и прилегающего основного металла и особенно тщательно поверхность присадочного металла (в связи с большой поверхностью и относительно малым объемом), травлением или механическим путем. Окисную пленку, образующуюся при сварке, удаляют либо катодным распылением, либо, применяя флюсы, которые обеспечивают ее растворение или разрушение с переводом в летучее соединение.
2. Резкое падение прочности при высоких температурах может привести к разрушению (проваливанию) твердого металла нерасплавившейся части кромок под действием веса сварочной ванны. В связи с высокой жидкотекучестью алюминий может вытекать через корень шва. Размеры сварочной ванны трудно контролировать, так как алюминий при нагреве практически не меняет своего цвета. Для предотвращения провалов или прожогов при однослойной сварке или сварке первых слоев многопроходных швов на большой погонной энергии необходимо применять формирующие подкладки из графита или стали.
3. В связи с большой величиной коэффициента линейного расширения и низким модулем упругости сплав имеет повышенную склонность к короблению. Поэтому необходимо прибегать к жесткому закреплению листов с помощью грузов, а также пневмо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированные стали и т. п.).
4. Необходима самая тщательная химическая очистка сварочной проволоки и механическая очистка и обезжиривание свариваемых кромок, так как сварку осложняет не только окисная пленка. В связи с резким повышением растворимости газов в нагретом металле и задержкой их в металле при его остывании возникает интенсивная пористость, обусловленная водородом, приводящая к снижению прочности и пластичности металла. Водород, растворенный в жидком металле должен в количестве 90 — 95% своего объема выделиться из металла в момент его затвердевания. Этому препятствует пленка тугоплавких окислов и низкий коэффициент диффузии водорода в алюминии. Поры образуются преимущественно в металле шва; часто наблюдают поры у линии сплавления в связи с диффузией водорода из основного металла под действием термического цикла сварки. Предварительный и сопутствующий подогрев до температуры 150 — 250°С при сварке толстого металла замедляет кристаллизацию металла сварочной ванны, способствуя более полному удалению газов и уменьшению пористости. Наибольшей склонностью к порам обладают сплавы типа АМг.
5. Вследствие высокой теплопроводности алюминия необходимо применение мощных источников теплоты. С этой точки зрения в ряде случаев желательны подогрев начальных участков шва до температуры 120 — 150°С или применение предварительного и сопутствующего подогрева.
6. Металл шва склонен к возникновению трещин в связи с грубой столбчатой структурой металла шва и выделением по границам зерен легкоплавких эвтектик, а также развитием значительных усадочных напряжений в результате высокой литейной усадки алюминия (7%). Легкоплавкая эвтектика на основе кремния (Тпл = 577°С) приводит к появлению трещин, если содержание кремния невелико (до 0,5%); при содержании кремния свыше 4 — 5% образующаяся эвтектика «залечивает» трещины. При обычном содержании кремния (0,2 — 0,5%) в металл шва вводят железо (Fe > Si), что приводит к связыванию кремния в тройное соединение Fe — Si — AL входящей в состав тугоплавкой перитектики. Это препятствует растворению кремния в жидком ликвате.
При сварке сплавов системы AL-Zn-Mg возможно замедленное разрушение — образование холодных трещин спустя некоторое время после сварки, обусловленное действием сварочных напряжений первого рода и выпадением и коагуляцией интерметаллидов.
Виды и свойства алюминиевых сплавов
Работая с этим металлом и смесями на его основе, важно знать свойства алюминиевых сплавов. От этого будет зависеть область применения материала и его характеристики
Классификация алюминиевых сплавов приведена выше. Ниже будут описаны самые популярные виды сплавов и их свойства.
Алюминиево-магниевые сплавы
Сплавы алюминия с магнием обладают высоким показателем прочности и хорошо поддаются сварке. Дополнительного компонента в состав не добавляют более 6%. В противном случае ухудшается устойчивость материала к коррозийным процессам. Чтобы дополнительно увеличить показатель прочности без ущерба защите от коррозии, алюминиевые сплавы разбавляются марганцем, ванадием, хромом или кремнием. От каждого процента магния, добавленного в состав, показатель прочности изменяется на 30 Мпа.
Алюминиево-марганцевые сплавы
Чтобы увеличить показатель коррозийной устойчивости, алюминиевый сплав разбавляется марганцем. Этот компонент дополнительно увеличивает прочность изделия и показатель свариваемости. Компоненты, которые могут добавляться в такие составы — железо и кремний.
Сплавы с алюминием, медью и кремнием
Второе название этого материала — алькусин. Марки алюминия с добавлением меди и кремния идут на производство деталей для промышленного оборудования. Благодаря высоким техническим характеристикам они выдерживают постоянные нагрузки.
Алюминиево-медные сплавы
Смеси меди с алюминием по техническим характеристикам можно сравнить с низкоуглеродистыми сталями. Главный минус этого материала — подверженность к развитию коррозийных процессов. На детали наносится защитное покрытие, которое сохраняет их от воздействия факторов окружающей среды. Состав алюминия и меди улучшают с помощью легирующий добавок. Ими является марганец, железо, магний и кремний.
Алюминиево-медные сплавы
Алюминиево-кремниевые сплавы
Называются такие смеси силумином. Дополнительно эти сплавы улучшаются с помощью натрия и лития. Чаще всего, силумин используется для изготовления декоративных изделий.
Сплавы с алюминием, цинком и магнием
Сплавы на основе алюминия, в которые добавляется магний и цинк, легко обрабатываются и имеют высокий показатель прочности. Увеличить характеристики материала можно проведя термическую обработку. Недостаток смеси трёх металлов — низкая коррозийная устойчивость. Исправить этот недостаток можно с помощью легирующей медной примеси.
Авиаль
В состав этих сплавов входит алюминий, магний и кремний. Отличительные особенности — высокий показатель пластичности, хорошая устойчивость к коррозийным процессам.
Особенности классификации сплавов
Сплавы на основе алюминия позволяют эффективнее использовать основной материал и расширить сферу его применения. Для изменения характеристик используются различные виды металлов. Редко добавляется железо или титан.
Сплавы алюминия разделяются на две большие группы:
- Литейные. Текучесть улучшается с помощью добавления в состав кремния. Расплавленный металл заливается в заранее подготовленные формы.
- Деформируемые. Из этих смесей изначально изготавливают слитки, после этого с помощью специального оборудования им придаётся требуемая форма.
В отдельную группу выделяется технический алюминий. Он представляет собой материал, в котором сдержится менее 1% посторонних примесей и компонентов. Из-за этого на поверхности металла образуется оксидная плёнка, которая защищает его от воздействия факторов окружающей среды. Однако показатель прочности у технического металла низкий.
Обрабатывают слитки разными методами. Это зависит от того, какую форму необходимо получить после обработки. Технологические процессы:
- Прокатка. Метод применяется при изготовлении фольги и цельных листов.
- Ковка. Технологический процесс, с помощью которого изготавливаются детали сложной формы.
- Формовка. Также применяется для изготовления заготовок сложной формы.
- Прессование. Таким образом изготавливаются трубы, профиля и прутья.
Дополнительно, чтобы улучшились характеристики, металл подвергается термической обработке.
Спрессованные профиля из алюминиевого сплава
Никелевые сплавы
В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.
Все сплавы никеля разделяются на четыре большие группы:
- Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, нейзильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
- Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
- Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, прецизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
- Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.
Сплав с кремнием
Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 — 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.
Сплавы никеля и марганца
Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.
Алюмель
Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.
Хромели
Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.
Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.
В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.
Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.
Характеристики
Содержание никеля в составе делает его стойким к коррозии и воздействию агрессивных химических веществ. Благодаря этому продукция, изготовленная из железоникелевых сплавов, может применяться в любых условиях.
Кроме того, материал прекрасно поддается обработке всеми известными способами без применения сложного и дорогостоящего оборудования. Простую обработку можно выполнить даже ручным инструментом. Благодаря чему, пермаллой может использоваться в качестве сырья для производства любых деталей.
Сплав обладает высокой прочностью и пластичностью. Однако основными качествами данного металла являются высокие показатели удельного сопротивления и магнитной проницаемости.
Маркируются циферно-буквенным обозначением, где первое число означает процентное содержание никеля, затем идет буква «Н» и обозначения дополнительных компонентов содержащихся в пермаллое. К примеру, обозначение 79HM, расшифровывается как пермаллой с 79 % содержанием никеля, легированный молибденом.
Эксплуатационные характеристики пермаллоя зависят не только от его состава, но и от метода обработки. Чаще всего применяют закаленный состав, превосходящий обычный по магнитной проницаемости и электросопротивлению. Стоит отметить, что свойства зависят также от скорости нагрева и охлаждения во время термообработки.
Как выбрать нужную марку твердого сплава?
Таблица марок твердых сплавов
Таблица выбора марок твердых сплавов в зависимости от вида, условий обработки, характера и обрабатываемого материала.
Характер
иусловия обработки |
Жесткость
Системы «Станок- деталь- инструмент» |
Сравнитель-
ная оценка сплавов по производи- тельности |
Рекомендуемые марки твердого сплава для обработки | ||||||
Углеро-
дистой и легирован- ной стали |
Специаль-
ной трудно- обрабатыва- емой стали |
Закален-
ной стали |
Чугуна
НВ≤240 |
Чугун
высокой твердости НВ = 400-700 |
Цветных
металлов и их сплавов |
Неметал-
лических материалов |
|||
ОБТОЧКА НАРУЖНЫХ И ТОРЦЕВЫХ ПОВЕРХНОСТЕЙ И РАСТОЧКА ОТВЕРСТИЙ | |||||||||
Черновое точение поковок, штамповок и литья по корке и окалине при неравномерном сечении среза и прерывистом резании (с ударами) | Повышен. | Наивысшая | Т5К10 | ВК8 | — | ВК6 | — | ВК6 | — |
Нормальная | Средняя | ВК8 | ВК11 | — | ВК6 | — | ВК6 | — | |
Недостат. | Понижен. | ВК11 | — | — | ВК8 | — | ВК8 | — | |
Черновое точение по корке при неравномерном сечении среза и непрерывном резании | Повышен. | Наивысшая | Т15К6 | Т5К10 | — | ВК6 | ВК6 | ВК6 | ВК2ВК3 |
Нормальная | Средняя | Т14К8 | ВК8 | — | ВК6 | ВК6 | ВК6 | ВК6 | |
Недостат. | Понижен. | Т5К10 | ВК11 | — | ВК8 | ВК8 | ВК8 | ВК8 | |
Получистовое и чистовое точение при прерывистом резании | Повышен. | Наивысшая | Т15К6 | Т5К10 | Т14К8 | ВК6 | — | ВК6 | ВК2ВК2 |
Нормальная | Средняя | Т14К8 | ВК8 | Т5К10 | ВК6 | — | ВК6 | ВК6 | |
Недостат. | Понижен. | Т5К10 | ВК11 | ВК8 | ВК8 | — | ВК6 | ВК6 | |
Получистовое и чистовое точение при непрерывистом резании | Повышен. | Наивысшая | Т30К4 | Т15К6 | Т15К6 | ВК2ВК3 | ВК2 | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т15К6Т | Т14К8 | Т14К8 | ВК6 | ВК6 | ВК3 | ВК2ВК3 | |
Недостат. | Понижен. | Т15К10 | Т5К10 | Т5К10 | ВК6 | ВК6 | ВК6 | ВК6 | |
Тонкое точение (типа алмазной обработки) | Повышен. | Наивысшая | Т60К6 | — | Т30К4 | ВК2ВК3 | ВК2 | ВК2ВК3 | ВК3 |
Нормальная | Средняя | Т30К4 | — | Т15К6Т | ВК2ВК3 | ВК2 | ВК2ВК3 | ВК2ВК3 | |
Недостат. | Понижен. | Т15К6Т | — | Т15Л6 | ВК6 | ВК6 | ВК6 | ВК6 | |
ФРЕЗЕРОВАНИЕ | |||||||||
Черновое фрезерование | Повышен. | Наивысшая | Т15К6 | Т5К10 | — | ВК6 | ВК6 | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т14К8 | ВК8 | — | ВК6 | ВК6 | ВК2ВК3 | ВК2ВК3 | |
Недостат. | Понижен. | Т5К10 | ВК8 | — | ВК8 | ВК8 | ВК6 | ВК6 | |
Чистовое фрезерование | Повышен. | Наивысшая | Т30К4 | Т15К6 | Т30К4 | ВК2ВК3 | ВК2ВК3 | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т15К6 | Т14К8 | Т15К6 | ВК6 | ВК6 | ВК2ВК3 | ВК2ВК3 | |
Недостат. | Понижен. | Т14К8 | Т5К10 | Т14К8 | ВК6 | ВК6 | ВК6 | ВК6 | |
СВЕРЛЕНИЕ ОТВЕРСТИЙ | |||||||||
Сплошное сверление | Повышен. | Наивысшая | Т14К8 | ВК8 | ВК6 | ВК6 | — | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т5К10 | ВК8 | ВК8 | ВК6 | — | ВК6 | ВК6 | |
Недостат. | Понижен. | ВК8 | — | — | ВК8 | — | ВК8 | ВК8 | |
Рассверливание | Повышен. | Наивысшая | Т15К6 | Т5К10 | ВК2ВК3 | ВК2ВК3 | — | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т15К6 | ВК6 | ВК6 | ВК6 | — | ВК6 | ВК6 | |
Недостат. | Понижен. | Т14К8 | ВК8 | ВК8 | ВК8 | — | ВК6 | ВК6 | |
ЗЕНКЕРОВАНИЕ ОТВЕРСТИЙ | |||||||||
Черновое зенкерование | Повышен. | Наивысшая | Т14К8 | Т5К10 | — | ВК2ВК3 | ВК2ВК3 | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т5К10 | ВК6 | — | ВК6 | ВК6 | ВК6 | ВК6 | |
Недостат. | Понижен. | ВК8 | ВК8 | — | ВК8 | ВК8 | ВК8 | ВК6 | |
Чистовое зенкерование | Повышен. | Наивысшая | Т30К4 | Т15К6 | Т15К6 | ВК2ВК3 | — | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т15К6 | Т14К8 | Т14К8 | ВК6 | — | ВК6 | ВК6 | |
Недостат. | Понижен. | Т15К6 | Т5К10 | Т14К8 | ВК6 | — | ВК6 | ВК6 | |
РАЗВЕРТЫВАНИЕ ОТВЕРСТИЙ | |||||||||
Развертывание отверстий | Повышен. | Наивысшая | Т60К6 | Т30К4 | Т30К4 | ВК2ВК3 | — | ВК2ВК3 | ВК2ВК3 |
Нормальная | Средняя | Т30К4 | Т15К6Т | Т15К6Т | ВК6 | — | ВК6 | ВК6 | |
Недостат. | Понижен. | Т15К6Т | Т15К6 | Т15К6 | ВК6 | — | ВК6 | ВК6 |
Где чаще всего применяют томпак
Используют томпак для плакирования стали, т.е. покрытия поверхности стальных изделий тонким слоем сплава, что применяется при изготовлении зарядов и пуль к огнестрельному оружию и получения биметалла сталь-латунь. Применение таких биметаллических листов экономит нержавеющую сталь и цветные металлы, защищая стальную сердцевину от коррозии и разрушения и придавая поверхности нужные свойства. Эта технология позволяет резко снизить стоимость изделия. Применяется биметалл для различных элементов химической аппаратуры, где другие покрытия не справляются с коррозией. Биметаллическая проволока применяется для линий связи. Используют томпак для изготовления высокоточного измерительного и другого оборудования.
Благодаря хорошим резонаторным свойствам, из сплава изготавливают раструбы духовых медных музыкальных инструментов. Используют его для изготовления:
- художественных изделий (картины, выполненные в технике чеканки по металлу);
- радиаторных трубок и тянутых труб диаметром до 30 мм;
- знаков отличия;
- фурнитуры;
- портсигаров и сигаретниц;
- некоторых видов медалей и монет.
Например, монеты России номиналом 10 и 50 копеек. Школьные Золотые медали изготавливаются из томпака с последующим нанесением позолоты. Бронзовые медали летней Олимпиады-80 в Москве были выполнены из томпака. В 1942-1943 годах в Канаде были выпущены монеты из томпака номиналом 5 центов.
За свою красивую окраску и легкость обработки томпак широко применяется ювелирами при изготовлении бижутерии. Сплав используют для изготовления посуды, статуэток, подсвечников, в отделке интерьеров и мебели. В странах Востока изящную тонкостенную посуду для воды, кувшины, чаши, подносы изготавливают из томпака, который украшают уникальными узорами, создавая тем самым произведения искусства. От разрушительного воздействия воды на сплав, посуду защищают путем лужения оловом, что позволяет надолго сохранить художественную красоту изделий.
Разновидности некоторых сталей
Марки стали | Термообработка | Твёрдость (сердцевина-поверхность) |
---|---|---|
35 | нормализация | 163—192 HB |
40 | улучшение | 192—228 HB |
45 | нормализация | 179—207 HB |
45 | улучшение | 235—262 HB |
55 | закалка и высокий отпуск | 212—248 HB |
60 | закалка и высокий отпуск | 217—255 HB |
70 | закалка и высокий отпуск | 229—269 HB |
80 | закалка и высокий отпуск | 269—302 HB |
У9 | отжиг | 192 HB |
У9 | закалка | 50—58 HRC |
У10 | отжиг | 197 HB |
У10 | закалка | 62—63 HRC |
40Х | улучшение | 235—262 HB |
40Х | улучшение+закалка токами выс. частоты | 45-50 HRC; 269—302 HB |
40ХН | улучшение | 235—262 HB |
40ХН | улучшение+закалка токами выс. частоты | 48-53 HRC; 269—302 HB |
35ХМ | улучшение | 235—262 HB |
35ХМ | улучшение+закалка токами выс. частоты | 48-53 HRC; 269—302 HB |
35Л | нормализация | 163—207 HB |
40Л | нормализация | 147 HB |
40ГЛ | улучшение | 235—262 HB |
45Л | улучшение | 207—235 HB |
65Г |
Электрические и магнитные свойства
Для типичного соотношения никеля и железа в сплаве 81 и 19 % соответственно, пермаллой обладает гранецентрированной кубической решёткой (ГЦК) кубической магнитной анизотропией, коэффициенты которой близки к нулю. В тонких плёнках поле анизотропии, определяемое как поле, необходимое для поворота намагниченности в направлении тяжелой оси не превышает 10 . В некоторых случаях одноосную анизотропию создают легированием пермалоя кобальтом (например, Ni65Fe15Co20). Одноосную анизотропию в плёнках можно также получить электроосаждением в магнитном поле 0,5 кЭ (40 кА/м). Отдельное подавление магнитной анизотропии (но не магнитострикции) возможно в аморфных формах пермаллоев с использованием бора (например, Ni40Fe40B20).
Отличительной особенностью Ni81Fe19 является так же близкий к нулю коэффициент магнитострикции. Намагниченность насыщения пермаллоя составляет величину порядка 104 Гс (1 Тл).
Удельное электрическое сопротивление пермаллоя составляет 2·10–5 Ом·см, а магнеторезистивный коэффициент лежит в пределах от 2 до 4 % (2 % для полей порядка 3,75 Э, или 300 А/м). В частности, проводимость электронов с основным направлением спинов превышает проводимость для неосновного направления в шесть раз.