Медь

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов

В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально

Рейтинг: 0/5 — 0 голосов

3 Медь для пищевой промышленности и медицины

Сернокислая медь ХЧ используется в различных отраслях химической промышленности, в сельском хозяйстве, медицине. Она представляет собой неорганическую соль серной кислоты и используется в виде голубоватого порошка, как добавка к тем или иным химическим соединениям. Сультфат ХЧ используется для изготовления электролитических ванн, а также для добавления в пищевые продукты в виде консерванта Е512.

Медь в пищевой промышленности

В строительстве медь ХЧ нужна для устранения последствий протечек, прочистки труб, а также для замешивания красок. Как правило, сульфат меди производится путем соединения серной кислоты и медных отходов или непосредственно меди. Производство медного купороса регламентируется согласно нормам ГОСТ 4165-78 и бывает нескольких видов. Сульфат обычно маркируется буквами ХЧ или ХДЧ и фасуется в специальные многослойные пакеты, фанерные ящики или бочки от 25 до 50 литров в объеме.

Другие востребованные медные сплавы

Известны и другие сплавы меди с разными металлами, однако у одних шире область применения, чем у других.

Свойства и применение медно-никелевых сплавов.

Сплавы из меди и никеля в основном содержат медную составляющую, а никель добавляется как легирующий элемент. Результатом такого соединения является сплав с повышенными показателями антикоррозионной стойкости, прочности и электросопротивления. Сплавы медно-никелевого состава относят к одному из двух видов: электротехническому или конструкционному.

Конструкционные сплавы – это нейзильбер и мельхиор. Мельхиором называют сочетание, в составе которого медь, никель (5–35 %), цинк (13–45 %). Нейзильбер представляет собой соединение меди и никеля, иногда в смесь добавляются железо и марганец. Мельхиоровые изделия наверняка имеются у многих дома, особая популярность принадлежит знаменитым подстаканникам.

У электротехнических медно-никелевых сплавов высокое электросопротивление. В эту группу входят константан и копель. В составе термостабильного соединения − константана − чуть больше половины, примерно 59 %, занимает медь, никель составляет 39–41 %, марганец всего 1-2 %. Материал отличается высоким удельным электрическим сопротивлением (около 0,5 мкОм-м), минимальным значением термокоэффициента электрического сопротивления, высокой электродвижущей силой в паре с медью, хромом, железом. Копелем называют сплав, в котором никель составляет 43-44 %, железо 2-3 %, остальную часть занимает медь.

Состав и свойства медных сплавов, в данном случае медно-никелевых, подходят для применения в электрических аппаратах и следующих типах изделий: резисторов, реостатов, термопар. Из материалов этого вида изготавливается посуда, медицинский инструмент, художественные изделия и сувениры. Медно-никелевые соединения применяются в строительстве судов. Банк России заказывает из этого сплава монеты достоинством один и два рубля по образцу 1997 г.

Свойства и применение вольфрамово-медных сплавов.

Очень необычные свойства у вольфрамово-медного соединения CuW или WCu. Это сочетание по большому счету назвать полноценным сплавом нельзя. В полученном материале частицы одного металла равномерно распределяются внутри кристаллической решетки второго. В сплаве сочетаются качества и меди, и вольфрама, благодаря чему он отличается термостойкостью, устойчивостью к абляции, высокой тепло- и электропроводностью. К тому же он хорошо поддается обработке. Для изготовления деталей применяется следующая технология: вольфрамовые частицы прессуют и уплотняют, придавая необходимую форму, затем проходит этап инфильтрации медного расплава.

Космическая индустрия, электроэнергетика, металлургия, машиностроение, электроника – вот неполный перечень промышленных областей, где используют сплав меди и вольфрама. Из этого материала изготавливают электроды для сварочных аппаратов – детали из сплава выдерживают высокое и среднее напряжение при дуговой и вакуумной сварке.

Свойства и применение молибденово-медных сплавов.

Сплав из меди и молибдена обладает меньшим весом, чем медно-вольфрамовый. Это преимущество используют там, где нужно уменьшить массу изделия. Заготовки из молибденово-медного сплава – это плоские пластинки, имеющие многослойную структуру. Внутри располагается основной слой чистого молибдена, который с двух сторон покрывают слоями 100%-ной меди или медью с дисперсионно-упрочненными качествами.

Данный вид медных сплавов обладает свойствами обоих видов металлов и отличается хорошими комплексными характеристиками. Вот некоторые качества данного соединения:

— высокая проводимость;

— возможность регулирования коэффициента теплового расширения;

— низкий процент содержания газов;

— сплав не магнитится;

— у материала имеются необходимые вакуумные свойства;

— легко обрабатывается механическим путем, обладает особыми высокотемпературными качествами.

При отсутствии скачков температуры и при средних температурных показателях у молибденово-медного сплава хорошие показатели прочности и пластичности. Когда внешняя температура выше температуры плавления меди, металл сжимается, испаряется и поглощает тепло, он может оказывать охлаждающее воздействие. Данные качества высокотемпературного материала могут использоваться в технологиях изготовления огнеупорных вкладышей горла сопла, электрических контактов и т. д.

Получение меди. Марки меди

Медь получают из сульфидных руд, содержащих медный, колчедан (CuFeS2). Сначала производят отжиг руд с целью снижения содержания серы. Затем руду плавят на штейн (не до конца выделанный продукт, полуфабрикат). Медные штейны переплавляют в медеплавильном конвертере с продувкой воздухом и получают черновую медь, содержащую 1-2% примесей железа, цинка, никеля, мышьяка и других примесей. Черновую медь рафинируют для удаления примесей. Техническая чистая медь имеет небольшое количество примесей, обычно, в виде фосфора Р и кислорода О2Марки медиМарка Чистой меди % Способ получения и примеси
М00к 99,98 Медные катоды: продукт электролитического рафинирования, заключительная стадия переработки медной руды.
М0к 99,97 Медные катоды: продукт электролитического рафинирования, заключительная стадия переработки медной руды.
М1к 99,95 Медные катоды: продукт электролитического рафинирования, заключительная стадия переработки медной руды.
М2к 99,93 Медные катоды: продукт электролитического рафинирования, заключительная стадия переработки медной руды.
М00Б 99,99 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М0Б 99,97 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М1Б 99,95 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М00 99,96 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода в отливке и отсутствие фосфора
М0 99,93 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода в отливке и отсутствие фосфора
М1 99,9 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода в отливке и отсутствие фосфора
М2 99,7 Переплавка лома. Повышенное содержание кислорода в отливке и отсутствие фосфора
М3 99,5 Переплавка лома. Повышенное содержание кислорода в отливке и отсутствие фосфора
М1ф 99,9 Переплавка катодов и лома медис раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99,9 Переплавка катодов и лома медис раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М2р 99,7 Переплавка катодов и лома медис раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М3р 99,5 Переплавка катодов и лома медис раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора

Титан и титановые сплавы

Титан и сплавы из него маркируются согласно существующим ГОСТ буквами и цифрами. Закономерностей при маркировке не существует. Однако ключевая особенность в этом случае — это обязательное присутствие буквы «Т». Числа обозначают условный номер титанового сплава.

Технический титан может маркироваться как ВТ1−0 или ВТ1−00. Все остальное означает титановые сплавы и имеет другие маркировки, которые обозначаются по-разному, и все их перечислить не удастся.

Ключевое преимущество титана и материалов на его основе — это отличное сочетание таких свойств, как:

  • относительно низкая плотность;
  • очень высокая устойчивость к коррозии;
  • высокая механическая прочность.

Но есть у них и недостатки — это дефицитность и дороговизна. По этой причине применение этого материала в холодильной и пищевой промышленности ограничено. Титановые сплавы преимущество применяются в таких отраслях:

  • судостроение;
  • ракетостроение;
  • авиационное строительство;
  • химическое машиностроение;
  • транспортное машиностроение.

Материалы могут применяться при высоких температурах до 500 градусов. Изделия на основе титановых материалов производятся методом обработки под давлением, а также посредством литья. По составу литейные сплавы соответствуют деформируемым, но при маркировке в конце указываются буквой «Л».

Практическое применение сплавов

Насыщенность медных сплавов добавками с легирующими свойствами составляет около 10%, латунь в этот список не входит. Чаще всего в роли легирующих добавок обычно выступают химические элементы: Zn, Mn, P, Au.

Для наделения сплава определенными техническими характеристиками используют различные легирующие добавки. Основными требованиями, предъявляемыми к сплавам, являются: выносливость в условиях высоких температурных режимов, устойчивость к износам и высокая прочность. Увеличить пластичность сплава помогают Si, Al и Sn, но строго в определенной дозировке, иначе получится обратный результат – хрупкость. Для обработки сплава в разных состояниях (холодном или нагретом) добавляют Ni, что благополучно применяется при чеканке монет. В ювелирном деле используют медно-серебряный сплав.

Некоторые характеристики медных трубок

В отличие от стальных, медным трубам не страшно замерзание воды внутри системы. Благодаря пластичности они могут расширяться. После размораживания стенки изделий не трескаются и способны эффективно функционировать вновь.

Медные трубы способны выдерживать высокое давление, большую температуру и не выходят из строя при перепадах этих показателей

Шероховатость медной трубки в 100 раз ниже, чем стальной, и в 5 раз ниже, чем пластиковой. Таким образом, обеспечивается высокая пропускная способность трубопровода при использовании коммуникаций меньших диаметров.

Использование медной трубы в оболочке обезопасит сеть от влияния блуждающих токов, а также снизить теплопотери. Благодаря защитному покрытию становится невозможным образование на изделии конденсата. Изоляцией может выступать полиэтиленовый слой, покрытие из вспененного полиуретана и другие полимерные формы.

Как отличить в домашних условиях?

На практике есть несколько простых и проверенных способов, помогающих определить металлы.

Как отличить бронзу от латуни при помощи магнита?

  • Если дело доходит до разнообразных сплавов, то различить бронзу от латуни бывает довольно сложно, потому как они могут быть практически идентичными. Многие специалисты считают, что бронза тяжелее латуни. Это действительно так и связано с содержанием в составе олова, и свинца, которые являются довольно тяжелыми.
  • Латунь гораздо легче из-за наличия в составе цинка. Можно провести несколько простых опытов, для того чтобы выяснить, какой из металлов находится перед вами. Практически всегда бронза магнитится, из-за наличия в составе олова.
  • То есть, если поднести достаточно сильный магнит, вы увидите значительное намагничивание. Чем выше содержание олова в металле, тем сильнее намагничивается. Латунь в свою очередь не проявляет магнитных свойств, то есть при поднесении магнита она совсем не прилипает.

Обработка материалов

Определение по весу

Это еще один из методов отличия металлов. Для выявления разницы достаточно просто взвесить в руках одинаковые объемом бруски из разных сплавов. Бронзовый экземпляр будет весить намного тяжелее заготовки из латуни.

Однако на массу изделия влияет и плотность соединений. Поэтому использовать вес как четкий критерий отличия металлов рекомендуется не всегда. Например, бронза с низким содержанием олова (2-8%) отличается тем, что будет весить легче латунного аналога.

Как проверить бронзу нагреванием, опиливанием в домашних условиях

Мы предоставляем вам еще два варианта проверки:

  • Используйте газовую горелку, так как она дает наиболее высокие температурные значения (до 600 градусов). Для этой операции домашней плиты будет недостаточно. Кроме того, опыт придется производить в отдельном помещении (мастерской или гараже). Возьмите заготовку и долго подержите её над огнем. Бронзовая не изменит внешнего вида. А на поверхности латунного изделия появятся темные пятна.
  • Если у вас существует возможность полного расплавления исходного образца, то проведите такой опыт. При перегреве появилось белое пламя и разбрасывающие хлопья такого же цвета. Значит, выгорает Zn и перед вами латунь. Она обладает хорошей пластичностью. Во время деформации она не потеряет своих физических свойств, а бронза обязательно при перегреве раскрошится и сломается.
  • Опиливание является наиболее доступным методом, который вы можете провести дома без финансовых затрат. Возьмите ножовку и попробуйте отпилить образцы. Латунное изделие хорошо и легко поддается распиловке, образуя при этом пласты. Стружка будет иметь витиеобразный вид. Металл с содержанием олова под воздействием острого предмета будет ломаться на маленькие кусочки, давая мелкую пыль. Попытавшись согнуть или расплющить образец, вы не добьетесь положительного результата, только испортите заготовку.

Это интересно: Нержавеющая сталь магнитится или нет: как определить нержавеющую сталь

Использование сверла и маркировка

При помощи дрели можно легко определит латунь

Но важно помнить, что инструмент повредит металлический предмет. Дело в том, что во время работы дрели из-под сверла выходит стружка, которая у меди довольно длинная и витиеватая, а у латуни она, наоборот, короткая и игольчатая

Ведь металл значительно мягче своего сплава.

Иногда на куске исследуемого материала можно увидеть маркировку, которая легко подскажет, что находится перед человеком. Так, отметка на меди начинается с буквы «М», а на латуни — с «Л». Но в других странах маркировка изделий несколько отличается от российской:

  1. В США можно на латунном сплаве увидеть значки С2, С3, С4.
  2. В Евросоюзе на меди и на латуни ставится буква C, но после неё на металле можно увидеть A, B, C, D, а на сплаве — L, M, N, P, R.

Сплавы на основе меди

Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.

Важные свойства металла:

  • Температура плавления — 1083°С.
  • Структура кристаллической решетки — кубическая гранецентрированая.
  • Плотность — 8,94 г/см3.

Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.

При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.

Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.

Бронзы

Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.

Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.

Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.

Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:

  • Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
  • Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
  • Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
  • Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.

Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.

При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.

Латуни

Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.

  • Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
  • Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
  • Свинец упрощает обработку резанием.

Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.

При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.

Маркировка пластиковой канализации.

Теперь давайте рассмотрим, что написано на канализационных трубах из ПВХ или полипропилена. Возьмем для примера условные обозначения на наружной канализации согласно ГОСТ 32413-2013

Из рисунка видно, что маркировка очень похожа на маркировку полипропиленовых труб для отопления или водоснабжения. Но добавляется один важный элемент — коэффициент SN. Этот коэффициент называется коэффициентом номинальной кольцевой жесткости и измеряется в кН/м2. Чем больше этот коэффициент тем большую нагрузку может выдерживать труба под слоем грунта. В обиходе используется понятие, что SN определяет глубину в метрах, на которую можно закопать наружную канализацию.

Для внутренней канализации маркировка регламентируется ГОСТом 32414-2013. Пример маркировки смотрите ниже на картинке:

Как видно из рисунка, для внутренней канализации отсутствует указание кольцевой жесткости.

Особенности производства и применение

Количество стран, которые кроме РФ стандартизировали сплав типа М2, значительно меньше, нежели в отношении М1. География его производства (кроме США и Японии) явно сдвинута в сторону Центральной и Восточной Европы:

  • Япония (стандарт JIS), США – С1821, С12500.
  • Польша (стандарт PN) – Cu99,7G.
  • Чехия (стандарт CSN) – 423004.
  • Австрия (стандарт ONORM) – Cu-C.

М2 легко сваривается с помощью предварительного лужения с использованием электродов, изготовленных из тугоплавких металлов вольфрама и молибдена. Стыковые сварные швы делаются с использованием электротрансформаторов. Тонкие стыки варятся ацетиленовыми горелками. Резка мягкого материала затруднена.

Сплав М2 легко штампуется, но для снижения количества фистов после отжига необходима специальная технологическая подготовка. Из меди М2 производятся:

  • прессованные трубы (ГОСТ 617-2006);
  • полуфабрикаты для обработки давлением холоднокатаные (мягкие и твёрдые, ГОСТ 1173-2006);
  • элементы криогенной техники;
  • аноды и детали фасонного литья.

Расплавленной медью с целью повышения коррозионной стойкости покрывают поверхности чёрных металлов. С использованием сплава М2 осуществляется производство латуни, бронзы и медно-никелевых сплавов. Наиболее распространённый вид полуфабриката – медная проволока.

Марки меди – характеристики, маркировка и ее расшифровка

Марки меди широко представлены в различных отраслях промышленности: этот цветной металл благодаря своим уникальным характеристикам является одним из наиболее распространенных. Все марки этого металла отличают высокая пластичность и коррозионная устойчивость при эксплуатации в различных средах, за исключением аммиака и сернистых газов.

Круг медный Ø 30

Современная промышленность выпускает медные заготовки в виде листового материала, труб, проволоки, прутков и шин. Различают бескислородную (М0) и раскисленную (М1) медь, изделия из которых нашли широкое применение в электротехнической, электронной и электровакуумной промышленности. В бескислородных марках О2 содержится в пределах 0,001%, в раскисленных — 0,01%.

Марок, которые классифицируются по чистоте содержания основного металла, сегодня достаточно много: М00, М0, М1, М2 и М3. Распространены также марки М1р, М2р и М3р, которые характеризуются содержанием кислорода в пределах 0,01% и фосфора 0,04%. Для примера, в марках М1, М2 и М3 кислород содержится в пределах 0,05–0,08%.

меди, % 99,99 99,95 99,97 99,90 99,90 99,70 99,70 99,50 99,50 99,00

Примеси в медных сплавах

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением. Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

Марки меди и их применение

Стандарты для медных сплавов

Государственными стандартами оговариваются правила маркировки меди и ее сплавов, обозначение которых соответствует определенной структуре.

О том, что перед нами одна из марок меди, свидетельствует буква «М» в ее обозначении.

После цифр следуют прописные буквы, по которым можно определить, каким способом получили данную марку меди. Из технологических способов получения меди различают следующие:

  • катодные (к);
  • метод раскисления, предполагающий невысокое содержание остаточного фосфора (р);
  • метод раскисления, предполагающий высокое содержание остаточного фосфора (ф);
  • без использования раскислителей – бескислородные (б).

Примеры маркировок таких марок и сплавов меди могут выглядеть следующим образом: М2р, М1б.

Химический состав меди ГОСТ 859-2014

Целый ряд марок меди, отличающихся уникальными характеристиками, активно используют в различных отраслях промышленности.

  • М0 – эта марка применяется для производства токопроводящих элементов и для добавления в сплавы, отличающиеся высокой чистотой.
  • М1 — из этой марки также производят токопроводящие элементы, прокат различного профиля, бронзы, детали для криогенной техники, электроды для сварки меди и чугуна, проволоку и прутки (применяемые для выполнения сварочных работ под слоем флюса и в среде инертных газов), расходные материалы для выполнения газовой сварки деталей из меди, не испытывающих значительных нагрузок при эксплуатации.
  • М2 – данная марка позволяет получать изделия, хорошо обрабатываемые давлением. Медь М2 также используют для деталей криогенной техники.
  • МЗ — детали из данной марки металла производят прокатным методом.

Пространственное распределение запасов меди в России

ГОСТ 859-2001, в котором оговаривались требования и характеристики медных сплавов, в 2014 году был заменен новым государственным стандартом (859-2014), что зафиксировано соответствующим Приказом Федерального агентства по техническому регулированию и метрологии. Новый стандарт по основным своим пунктам практически идентичен ГОСТу 859-2001.

ГОСТ 859-2001 о марках меди

Данный документ государственного стандарта относится к литым и деформированным полуфабрикатам из меди, а также к меди, изготовленной в виде катодов.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование. Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Это интересно: Арматура для фундамента

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Основные свойства меди

Соединения меди

Чаще всего в природе встречается медный купорос, сульфат меди. Дачники и огородники хорошо знают этот синий порошок. Его применяют для дезинфекции растений от насекомых.

Ацетат меди — фунгицид, компонент краски для керамики.

Парижская (швейнфуртская) зелень, ацетат-арсенид меди. До сих пор используют в окраске наружных частей морских судов (чтобы они не обрастали моллюсками и прочей морской живностью). Фунгицит, инсектицид.

Оксиды используют в окраске стекла и эмалей.

Нитраты применяют для патинирования медных изделий.

Со временем на них образуется естественная патина — зеленоватая оксидно-карбонатная пленка. Иногда патину наращивают искусственно, для состаривания, придания антикварного вида изделию.

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

2. Химические свойства.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: