Основные характеристики сварочного шва
Различают геометрические и технологические параметры сварного шва. К геометрическим относят размеры в поперечном сечении — ширину, толщину и высоту над основной плоскостью. На виды сварочных соединений влияют также и технологических параметры: катет и корень в стыке, его выпуклость/вогнутость, а также соотношение объема металла шва к общей площади сварного стыка.
Виды сварочных швов, в частности, ширина, высота и толщина, зависят от требуемых прочностных показателей соединения. Такая зависимость не является однозначной: чрезмерно массивный шов, наоборот, снижает качество соединения, поскольку сцепление зон наплавки и механического сплавления ослабляется, а качество поверхности может ухудшиться из-за наличия сварочного грата, а также интенсификации процессов окисления и обезуглероживания материала деталей.
Классификация сварных швов и форма их поверхности важны и с точки зрения долговечности готовых конструкций. Вогнутые швы, оформляемые по параболической зависимости высоты шва от его толщины, снижают уровень внутренних напряжений и минимизируют остаточные деформации. Наоборот, ровные швы, когда сохраняются острые углы при переходе от одной поверхности к смежной, уровень остаточных напряжений и деформаций повышают.
Оптимизацию формы поперечного сечения сварочного соединения можно производить при помощи следующих практических коэффициентов:
- Для наилучшего соотношения ширины к высоте — 1,2-1,5;
- Для наилучшего соотношения ширины к выпуклости — не более 8;
- Для наилучшего соотношения площадей поверхности шва к площади металла в зоне соединения — 0,85-1,0.
Глубина провара определяет однородность структуры в зоне соединения. Она принимается в пределах 0,5-0,8 (при меньших значениях ухудшается прочность сварного стыка, а при увеличенных — возрастает опасность проплавления).
Количество проходов зависит от способа разделки кромок и толщины соединяемых элементов. При увеличенных зазорах и обычном профиле кромок (со скосом) количество проходов и амплитуду колебаний горелки приходится изменять, что повышает уровень внутренних сварочных напряжений. Проблема (для сварки толстых листов) снимается оптимизацией формы подготовки кромок.
Классификация сварочных швов основывается на технологии их образования, соотношении геометрических размеров и последовательности выполнения сварки.
1. Скорость переключения ниже, чем у силовых MOSFET и выше, чем у биполярных транзисторов. При закрывании транзистора ток коллектора имеет хвост за счет небольшой проводимости, вызванной малой скоростью закрывания.
2. Возможность «защелкивания» из-за внутренней тиристороподобной PNPN-структуры.
IGBT-структура пригодна для повышения значения запирающего напряжения (напряжение отсечки). В случае силовых MOSFET с увеличением напряжения отсечки резко растет сопротивление канала транзистора в открытом состоянии из-за увеличения удельного сопротивления и ширины области дрейфа носителей заряда, необходимой для поддержания высокого рабочего напряжения.
По этим причинам обычно избегают разрабатывать силовые MOSFET, рассчитанные на большой допустимый ток, с высоким значением запирающего напряжения. Напротив, для IGBT удельное сопротивление области дрейфа носителей заряда существенно уменьшается за счет высокой концентрации инжектированных носителей заряда вызванных протеканием тока в открытом состоянии. Прямое падение напряжения на области дрейфа начинает зависеть от ее толщины и не зависеть от начального удельного сопротивления.
Ремонтируем сварочный аппарат TELWIN Force 165
Здесь будет рассмотрен ремонт сварочного инвертора TELWIN Force 165. Для тех, кто не знаком с устройством и схемотехникой сварочного инвертора, предлагаем сначала ознакомиться с материалами на эту тему, а именно:
В этих двух статьях на примере реального аппарата TELWIN Force 165 и принципиальной схемы сварочных инверторов TELWIN Tecnica 144-164 подробно описана электронная начинка и назначение каждого элемента схемы.
Но давайте вернёмся к нашему неисправному аппарату – сварочному инвертору TELWIN Force 165. По словам владельца, аппарат исправно работал, но вдруг, после небольшой передышки в работе напрочь отказывался выполнять свои обязанности. При попытке начать работу искра не появлялась, а изнутри корпуса доносился неестественный для штатной работы «гул» и «писк».
По словам владельца также было известно, что аппарат вроде как работал – был слышен шум вентилятора обдува, включался индикатор штатной работы. А это свидетельствует о том, что транзисторы инвертора исправны.
Складывалось впечатление, что сварочный инвертор «уходит в защиту» — срабатывают внутренние защитные цепи, которые есть в составе любого импульсного агрегата, тем более такого мощного.
Поиск неисправности сварочного инвертора я начал нестандартно. Включать приборчик не стал.
Ранее я с такими приборами не сталкивался, и они были для меня в новинку. Поэтому первым делом вскрыл корпус и стал проверять мультиметром все доселе известные мне детали.
На печатной плате сварочного инвертора обнаружил знакомые элементы: вентилятор, мощный диодный мост (на него установлен радиатор), высоковольтные электролитические конденсаторы фильтра, фильтр EMC, ключевые мощные транзисторы инвертора (установлены на радиатор), импульсный трансформатор, электромагнитное реле…
Неприятным сюрпризом оказалось то, что поверхность печатной платы была залита каким-то лаком, который затруднял считывание маркировки SMD-элементов и микросхем.
Также были обнаружены защитные элементы. Один из них – термопредохранитель на 90 0 С. Он приклеен к радиатору диодного моста.
Насколько мне известно, такие термопредохранители срабатывают намертво, то есть если нагреются выше своей температуры срабатывания, то размыкаются навсегда. Похожие термопредохранители можно обнаружить в силовых трансформаторах. Там они включаются в цепь первичной обмотки и приклеиваются к ней. Защищают трансформатор от перегрева. Иногда можно ложно судить о том, что первичная обмотка трансформатора в обрыве, хотя стоит убрать (или замкнуть накоротко) этот самый термопредохранитель, как оказывается, что трансформатор исправен.
Поэтому первым делом проверил целостность термопредохранителя на 90 0 С. Он оказался исправен.
Кроме этого на одном из радиаторов, к которым крепятся мощные ключевые транзисторы инвертора, также есть температурный датчик. Внешне он очень похож на термовыключатель серии KSD, которые используются в термопотах, водяных нагревателях и прочей бытовой электротехнике.
Особенность этих термовыключателей в том, что их контакты вновь замыкаются, если температура опустится ниже определённого значения. Понятно, что этот температурный датчик отслеживает нагрев мощных ключевых транзисторов и, если есть перегрев, временно отключает работу сварочного инвертора. Как только радиаторы, а, следовательно, и транзисторы остынут, то аппарат вновь запустится, и будет работать в штатном режиме.
При проверке термовыключателя оказалось, что он также исправен. Ну, что ж, будем искать неисправность дальше.
После недолгих поисков, было решено проверить мощные выпрямительные диоды. На печатной плате они расположены рядком и надёжно прикручены к радиатору шурупами. На страницах сайта уже рассказывалось о том, как проверить диод.
Маркированы как 60CPH03. Это ультрабыстрые сдвоенные диоды VS-60CPH03.
После проверки оказалось, что ориентировочно неисправны все три сдвоенных диода. Но это всего лишь предположение, так как диоды впаяны в схему, и 100% утверждать, что именно они неисправны нельзя. Несмотря на это стало понятно, в каком направлении нужно «копать» дальше.
Разобраться в проблеме можно было бы и без схемы, но с ней интересней, тем более что под рукой оказалось руководство по ремонту сварочных инверторов TELWIN Tecnica 144-164, которые, честно говоря, мало чем отличаются по своему составу и схемотехнике от TELWIN Force 165. Если взглянуть на принципиальную схему, то можно заметить, что даже при пробое одного из сдвоенных диодов 60CPH03, все остальные диоды при проверке будут также «неисправными», если их не выпаять из платы и не проверить каждый в отдельности. Вот кусочек схемы — выходной выпрямитель.
Инверторный ИБП
Абсолютное большинство электроприборов в России, которые современный человек использует каждый день, рассчитаны на напряжение 220В-230В.
Химические источники напряжения, аккумуляторы, способные хранить заряд электричества в течении длительного времени, обеспечивают постоянное напряжение, слишком низкое для питания бытовой техники: 2 вольта, 6 вольт, 12В и т.д. Инверторы преобразуют постоянное напряжение от аккумуляторов в переменное 220В или 230В в зависимости от конструкции и настроек. На этом основана работа всех ИБП!
Видео что такое иверторный бесперебойник и как он работает
Время автономной работы бесперебойника, будет пропорционально количеству и емкости подключенных ко входу инвертора аккумуляторов. Но есть и другие факторы влияющие на время работы- Подробнее прочитать можно здесь.
Аккумуляторы могут хранить запас электрической энергии в течении длительного времени что позволяет держать в запасе большой объем накопленной электроэнергии для аварийных ситуаций, накопленный в АКБ.
При пропадании электричества на вводе в распределительный щит автоматика инвертора мгновенно перебросит питание подключенных к выходу инвертора электроприборов на аккумулятор (через электронную схему, преобразующую постоянное напряжение 12 Вольт, в переменное 220 В с заданной частотой (Гц)).
В онлайн системах переключение отсутствует-Подробнее можно прочитать здесь.
Главные преимущества электрических инверторов:
- Это экологическая безопасность (отсутствие вредных загрязнений окружающей среды)
- Низкий шум при работе, имеют низкий уровень шума вентилятора охлаждения в разы по сравнению с электростанциями…
- Не требуют, заправки топливом и постоянного технического обслуживания.
- Имеют высокий КПД, и низкую стоимость эксплуатации, привязанную к стоимости электроэнергии.
- Непрерывное питание, отсутствует пауза (как в электростанциях), при переключении на батареи.
- Возможность увеличивать время автономии путем наращивания количества батарей.
Основные области применения инверторов:
1) ИБП для котлов (ИБП для газовых котлов)
2) ИБП для насосов (ИБП на длительное время резерва)
3) Источник бесперебойного питания для систем сигнализации и видеонаблюдения (ИБП для систем сигнализации и видеонаблюдения)
Пример применения в частном доме:
Рассмотрим модель ECOVOLT PRO 1012 .
Мощность нагрузки 1000 Вт при значении параметра cos =0.8 позволяет подключить электрооборудование суммарной мощностью 1 кВт.
Приблизительный расчет мощности нагрузки может быть такой:
- Газовый котел с обвязкой – 300 Вт.
- Циркуляционный насос 70 Вт,
- Аварийное освещение – 300 Вт,
- Телевизор – 200 Вт
(значения мощности электроприборов могут отличаться от приведенных здесь, точные значения можно получить из паспорта оборудования).
Пробой при измерениях параметров IGBT-модулей в условиях потребителей
Для исключения вероятности монтажа неисправных элементов и повышения надежности преобразователя многие потребители организуют входной контроль комплектующих, в том числе и IGBT-модулей. При этом специалисты, ранее работавшие с обычными биполярными транзисторами, зачастую проводят измерения параметров аналогичными методами, не учитывая особенности IGBT. Бывали случаи, когда потребители, нарушая методики измерения обратного напряжения «коллектор-эмиттер» и тока утечки коллектора, подавали на транзистор напряжение при подключенном высокоомном (200–500 кОм) резисторе между затвором и эмиттером или вовсе при разомкнутой цепи затвор-эмиттер.
В IGBT между коллектором и затвором имеется паразитная емкость Миллера, которая при отсутствии предупредительных мер оказывает сильное влияние на затвор. Поэтому при контроле напряжения пробоя и тока утечки в цепи коллектор-эмиттер затвор должен быть закорочен с эмиттером. Если этого не сделать, то при приложении напряжения к коллектору на затвор через указанную емкость наводится напряжение, которое при достижении порогового значения включает транзистор (при этом он открывается не полностью и остается в активном режиме). IGBT-ключи не предназначены для работы в активном режиме, так как в этом случае они имеют сильную положительную температурную зависимость тока коллектора. Подобный эффект приводит к шнурованию тока через транзистор и локальному тепловому пробою. Если в цепь «затвор-эмиттер» подключен резистор с высоким сопротивлением, он также не может компенсировать наведенный емкостной ток. Поэтому измерение обратного напряжения и тока утечки цепи «коллектор-эмиттер» необходимо проводить только при закороченной металлической перемычкой цепи «затвор-эмиттер».
Еще один вид выхода из строя при входном контроле — перегрев модулей при измерении напряжения насыщения и прямого падения напряжения на диоде. Для проверки указанных параметров на некоторых предприятиях были организованы измерения на постоянном токе. Конечно, из-за перегрева приборы выводят из строя. Во избежание этого контроль параметров, связанных с большими токами, должен производиться импульсными методами. Длительность импульсов тока должна быть достаточной для завершения переходных процессов в приборах и проведения измерений. Потребители, проводившие измерения статических параметров на постоянном токе, естественно, столкнулись с тем, что параметры «плывут» в результате разогрева структуры. Длительное протекание постоянного тока через модуль в некоторых случаях (при измерениях без хорошего охлаждения) привело к перегреву модуля и выходу из строя (рис. 5).
Устройство и принцип работы
Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.
Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:
- К — коллектор.
- Э — эмиттер.
- З — затвор.
Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.
https://youtube.com/watch?v=QhQ_X_332cU
Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.
Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.
Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.
Общие сведения о приборе
Величайшее открытие Николы Теслы сегодня используется человечеством повсюду. Большинство приспособлений в каждом доме предназначены для работы от источника постоянного тока, но от розеток идет переменный. Именно поэтому почти всегда требуется специальное устройство или выпрямитель, который будет преобразовывать AC в DC.
Инвертор же выполняет совершенно противоположную функцию. Можно рассмотреть его работу на примере обычного фонарика. Прибор небольшой и питается от встроенного аккумулятора, который становится источником постоянного тока. Если извлечь его из приспособления, перевернуть другим полюсом и снова установить, разницы в работе или в качестве освещения не будет заметно. Однако электричество будет протекать по-другому.
Такой процесс можно сравнить с механическим преобразователем, когда человеческие руки поворачивают аккумулятор со скоростью 50−60 раз в секунду. Конечно, приборы, которые можно приобрести в специализированных магазинах, работают несколько иначе. Для постоянного изменения направления движения электронов используются магнитные переключатели. Однако такая конструкция только у приспособлений механического типа.
Электронные инверторы меняют направление плавно, исключая резкие перепады напряжения. Второй тип считается более предпочтительным вариантом, поскольку постоянные скачки напряжения отрицательно отражаются на функционировании некоторых электроприборов. Конструкция таких инверторов оснащена специальными индукторами и конденсаторами. Эти детали смягчают поток энергии на входе и выходе, за счет чего и образуется плавный источник питания для электроприборов.
В некоторых случаях инверторы применяются для трансформаторов с целью преобразования источника переменного тока на более высокую или низкую частоту в зависимости от нужд конкретного потребителя. Стоит отметить, что выходная мощность всегда меньше входной. Это необходимо для нормального функционирования устройств. Любой трансформатор или инвертор не может выделять больше энергии, чем потребляет, поскольку некоторая ее часть теряется.
Структура IGBT
Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.
Рис. №2. Структура транзистора IGBT.
Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.
Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.
Технические компоненты
Общая структура работы такого устройства простая, и включает в себя основной источник тока, опциональный элемент выпрямителя для выходного тока, общий блок управления.
Качественный источник тока может быть полностью реализован на базе трансформаторной технологии или исключительно на базе инверторной системы, где силовые транзисторы для сварочных инверторов играют важную роль качественной работоспособности устройства.
Для трансформаторных установок допускается самостоятельное ручное регулирование работы прибора, но среди недостатков выделяется грубый режим регулировки, низкий уровень качества сварного шва. Инверторные установки, наоборот, имея самый простой сварочный инвертор на одном транзисторе обеспечивают высокое качество образования шва, которые сочетаются с силовыми полупроводниковыми элементами.
Транзисторы для инверторов
Основными техническими компонентами, обеспечивающие высокое качество сварочных работ, является наличие IGBT-транзисторов, а также универсальных быстродействующих диодов. В этом случае возникает резонный вопрос, как проверить IGBT транзистор сварочного инвертора. Укажем основные данные транзисторных компонентов для сварки версии IGBT
Тип |
Характеристика |
V |
Сверхнизкая энергия осуществления выключения, работа до 600 В, частота до 1200 кГц |
НВ |
Малое напряжение насыщенного принципа воздействия. Низкая энергия выключения. Напряжение до 650 Вольт, частота до 50 кГц |
Н |
Низкий эффект режима выключения. Напряжение подачи – до 1200 вольт, частота до 35 кГц. |
М |
Низкое напряжение режима насыщения, напряжение сети до 1200 Вольт, частотный параметр – до 20 кГц |
W |
Режим малого прямого падения напряжения, и минимальный режим эффекта восстановления работоспособности. |
Особенности работы транзисторных узлов
Наиболее частая схема применения внутри инверторов используется по технологии push-pull, мостовой принцип функционирования, полумостовой вариант рабочего инвертора, полумостовой комплексный несимметричный вариант исполнения инверторного прибора или косой полумост. Несмотря на достаточное обилие топологий, замена транзистора FGH40N60 в сварочном инверторе по общим требованиям является стандартным, куда включается следующее:
- Высокий режим напряжения. Для эффективной замены транзисторов в сварочных инверторах, общие данные сети напряжения должны быть выше 600 Вольт.
- Большие параметры коммутационных токов. Среднее значение показателя должен быть не менее десятков ампер, а максимальные параметры могут показывать отметку за сотни Амперов.
- Режим высокой частоты переключения. В зависимости от габаритов трансформатора внутри прибора, можно увеличить частоту прибора, а также индуктивность для модели выходного фильтра.
- Для режима минимизации потерь на включение и выключение агрегата, можно узнать, как проверить транзисторы сварочного инвертора, при помощи малого значения подачи энергии на режим включения (Евкл), а также на режим выключения (Евыкл). В данном случае будут минимизированы все потери.
- Для минимизации возможных потерь, используем низкое значение для напряжения режима насыщения, или Uкэ нас.
- Жесткий эффект коммутации, должен быть стойкий для транзисторов для сварочных инверторов Ресанта. Инверторное оборудование в данном случае работает только с индуктивным режимом нагрузки.
- Параметры короткого замыкания. Аппарат должен иметь режим стойкости для данного параметра, эти сведения являются исключительно критичными для мостовых и полумостовых вариантов инверторной техники.
Как рассчитать потерю мощности на IGBT?
Рекомендуем для детального расчёта правильного выбора транзисторных систем использовать ниже приведённую схему.
Параметры | Значения |
Суммарные потери | Pd = Pконд + Pперекл |
Кондуктивные потери | Pконд = Uкэ нас (rms) × Iк × D, где D – коэффициент заполнения |
Потери на переключение | Pперекл = Eперекл × f, где f – частота переключений, Eперекл = (Eвкл + Eвыкл) — суммарные потери на переключения (приводится в параметрах IGBT) |
Максимальная мощность, ограничиваемая перегревом кристалла | Pd = (Tj – Tc)/Rth-jc, где Tc – температура корпуса, Tj – температура кристалла, Rth-jc – тепловое сопротивление «кристалл-корпус» (приводится в параметрах IGBT) |
Все эти данные помогут вам правильно рассчитать нужный тип транзистора для инверторного сварочного аппарата. При выборе транзистора учитываем обязательно параметр для высокого порога возможного напряжения работы устройства.
Подведем итог
В завершение нашей статьи хочется порекомендовать новичка в сварочном деле не волновать о выборе транзисторов. MOSFET сравнительно дешевле в ремонте и для вас будет привести его в рабочее состояние намного легче.
А если вы мастер сварочного дела, то конечно для работы вам будет нужно IGBT инвертор. Разумеется, их обслуживание будет дороже, но зато есть возможность использовать больше мощности.
В любом случае, какой бы прибор вы не выберите, современный и компактный инвертор будет помогать вам при выполнении любых сварочных работ.
Дополнительные функции помогут даже абсолютному новичку почувствовать себя мастером сварочных работ. Конечно, инверторный сварочный прибор намного сложнее чем классический трансформатор.