Магниевые сплавы

Деформируемые сплавы

По сравнению с литейными, деформируемые магниевые сплавы отличаются большей прочностью, пластичностью и вязкостью. Они используются для производства заготовок методами прокатки, прессования и штамповки. В качестве термической обработки изделий применяется закалка при температуре 350-410 градусов с последующим произвольным охлаждением без старения.

При нагреве пластические свойства таких материалов возрастают, поэтому обработка магниевых сплавов осуществляется посредством давления и при высоких температурах. Штамповка выполняется при 280-480 градусах под прессами посредством закрытых штампов. При холодной прокатке проводятся частые промежуточные рекристаллизационные отжиги.

При сварке магниевых сплавов прочность шва изделия может быть снижена на отрезках, где выполнялась подварка, из-за чувствительности таких материалов к перегреву.

Получение и производство

Для изготовления сплавов используются материалы высокой чистоты, поскольку, как говорилось выше, даже мельчайшие примеси нежелательных элементов могу существенно ухудшить свойства готового продукта.

Получение сплавов магния облегчается тем, что температура плавления расплава не превосходит 700˚С. Для получения материала с требуемыми свойствами в расплав чистого магния вводят необходимое количество легирующих элементов. Газовый состав атмосферы вокруг расплава должен быть очищен от водорода, поскольку его высокая растворимость в магнии способна привести к дефектам внутренней структуры.

Алюминий и его сплавы

Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.

Важные свойства алюминия:

  • Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
  • Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
  • Низкая прочность в чистом виде — 50 МПа.
  • Структура кристаллической решетки — кубическая гранецентрированая.

Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.

При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.

Деформируемые сплавы алюминия

Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.

Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.

Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.

Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.

Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).

Литейные сплавы на основе алюминия

Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.

Температурный коэффициент линейного расширения

В зависимости от температуры применения, коэффициент линейного расширения магниевых сплавов может изменяться от 12 (при 20°С) до 43,2 К-1·10-6 (при 300-400°С). Меньше всего изменение линейных размеров при нагревании отмечается у МА2-1, наибольшее — у МА18.

В таблице приведен ТКЛР магниевых сплавов в интервале температуры от 20 до 400°С.

Температурный коэффициент линейного расширения сплавов Mg при различных температурах
Магниевый сплав Интервал температуры, °С Коэффициент теплового линейного расширения, К-1·10-6
МА1 20-100…100-200…20-200 26…27…26,5
МА2 20-100 26
МА2-1 20 12
МА5 20-100 26
МА8 20-100…100-200…200-300…20-200…20-300 23,7…26,1…32…24,9…27,3
МА11 20-100…20-200…20-300…100-200…200-300 25,7…28,7…30,4…29,3…30,1
МА12 10-100…20-200…20-300…20-400…200-300…300-400 25,7…26…26,5…27…27,5…28,6
МА14 (ВМ65-1) 20-100…100-200…20-200 20,9…22,6…21,8
МА15(ВМДЗ) 20-100…100-200…200-300…300-400…20-200…20-300 25,9…27,8…30,6…30,1…28,1…28,6
МА18 (ВМД5) 20-100…20-200…100-200…300-400 39,7…37,4…35,1…43,2
МА19 (ВМД6) 20-100…100-200…200-300…300-400 26,2…27,8…31,4…31,9
МА20 (ВМД8) 20-100…100-200…200-300…20-200…20-300 29,1…29,4…31…29,2…29,8
МЛ4, МЛ4 п. ч. 20-100…20-200…20-300…100-200…200-300 26,4…27,6…28,3…28,8…29,7
МЛ5, МЛ5 п. ч. 20-100…20-200…20-300…100-200…200-300 26,8…28,1…28,7…29,4…29,9
МЛ6 20-100…20-200…20-300…100-200…200-300 26,1…27,3…27,7…28,5…28,4
МЛ9 20-100…20-200…20-300…20-400…100-200…200-300…300-400 27,7…28…28,3…28,9…28,3…29…29,4
МЛ10 20-100…20-200…20-300…20-400…100-200…200-300…300-400 27,7…28…28,3…28,6…28,3…29…29,4
МЛ7-1 20-100…20-200…20-300…100-200…200-300 27,4…27,7…27,8…28,1…28,1
МЛ11 20-100…20-200…20-300…100-200…200-300 21,9…22,7…24,8…23,5…25
МЛ12 20-100…20-200…20-300…100-200…200-300 26,2…27,8…28,9…29,5…31,2
МЛ15 20-100…20-200…20-300…20-400…100-200…200-300…300-400 25,9…26,9…27,9…28,8…27,9…29,8…31,5
ВМЛ5 20-100…20-200…20-300…100-200…200-300 27,6…27,9…28,3…28,3…29,2
ВМЛ6 20-100…20-200…20-300…20-400…100-200…200-300…300-400 27,1…27,6…28…28,8…28…28,9…31,3
ВМЛ7 20-100…20-200…20-300…20-400…100-200…200-300…300-400 26,9…27,7…28,6…29,6…28,6…30,2…32,8

Магний в нашей жизни

Металл и его сплавы нашли широкое применение в разных сферах жизни.

  • Способность металла давать яркий огонь использовали на заре фотографии.
  • Легкость металла открыла ему путь в авиацию. Наши ноутбуки, многие фотокамеры содержат магниевые детали — не таскать же тяжелый прибор, если можно сделать легкий.
  • В химических источниках тока энергия химических реакций напрямую превращается в электрическую. Чистый металл и его соединения в электрических батареях сообщают им высокие ЭДС и отменные энергетические характеристики.


Металлический магний

Анодом в таких батареях служит магний. В качестве катода применяют:

  • марганец;
  • висмут;
  • серу;
  • хлористое серебро;
  • хлористый свинец в смеси с графитом;
  • диоксид марганца с графитом.

Рекомендуем: ЦВЕТНЫЕ МЕТАЛЛЫ — всё, кроме железа

Огнеупорные материалы необходимы для футеровки металлургических печей, тиглей.

Дешевым и качественным сырьем для этого могут быть минералы магния:

  • бишофит;
  • магнезит;
  • доломит.

В военном деле магний «освещает темные места». А проще, из него делают светозвуковые и светошумовые боеприпасы (патроны, гранаты, снаряды). До конца не убьет, но оглушит и дезориентирует.

Применяют в антитеррористических операциях, при освобождении заложников, разгоне противозаконных сборищ (при массовых беспорядках).

Зажигательные бомбы, трассирующие пули, ракеты сигнальные и осветительные — везде используется яркое горение металла.

Препараты магния необходимы в медицине. Недостаток макроэлемента губителен для сердечно-сосудистой системы. Ишемическая болезнь, артериальная гипертония, аритмии — каждая из этих болезней усугубляется дефицитом магния.

Недостаток нескольких граммов металла плохо отражается на наших нервах (депрессии, мигрени, головокружения, тревога, раздражительность).

Важно: у каждого потребность в магнии возрастает при стрессах, физических нагрузках; у спортсменов — при изнурительных тренировках и на соревнованиях. Специалисты фирмы Тойота разработали аккумуляторную батарею (на основе серно-магниевых элементов)

Показатели у аккумулятора завидные. Загвоздка в том, что в батарее происходит саморазряд (катод электрохимически восстанавливается, образуются полисульфидные анионы, переходящие в раствор). Пока эта проблема не будет решена, серно-магниевые аккумуляторы специалистам только снятся

Специалисты фирмы Тойота разработали аккумуляторную батарею (на основе серно-магниевых элементов). Показатели у аккумулятора завидные. Загвоздка в том, что в батарее происходит саморазряд (катод электрохимически восстанавливается, образуются полисульфидные анионы, переходящие в раствор). Пока эта проблема не будет решена, серно-магниевые аккумуляторы специалистам только снятся.

Магний металлический обладает сильными восстановительными свойствами. Его используют для получения бериллия, ванадия, хрома. Металл используют как лигатуру в сталях и чугуне.

Все шире применяют магнийорганические соединения в химическом синтезе галогенопроизводных, спиртов, углеводородов.

Где еще применяют соединения магния

Бесцветные кристаллы фторида магния используют в специальной оптике (вещество прозрачно в диапазонах от ультрафиолетового до инфракрасного.

Стеарат магния — пищевая добавка Е470. Используют в косметической, пищевой промышленности, в фармации.

Магниевые сплавы применяют в изготовлении отбойных молотков, в атомной и нефтяной промышленности.

Каков он, «вспыльчивый металл»

Наш герой — элемент второй группы периодической системы Менделеева. Латинское название Magnesium, атомный номер 12.

Магний теперь относится к щелочноземельным металлам. Однако раньше он таким не считался — его гидроксид не является щелочью, хотя раствор в присутствии фенолфталеина (индикатор) окрашивается в слабо-розовый цвет. Полноценные щелочи с фенолфталеином окрашиваются в густой малиновый цвет.

У чистого магния плотноупакованная гексагональная кристаллическая структура.

Строение атома указывает на принадлежность к металлам. Электронная формула элемента — 1s 2 2s 2 2p 6 3s 2. То есть, на внешнем энергетическом уровне у магния болтается пара электронов, в любой момент готовая «свалить налево» — вступить в реакцию с другим элементом. Кое-кто еще помнит, что свойство металлов на внешнем уровне иметь от 1 до 3 электронов.

Деформируемые сплавы

По сравнению с литейными, деформируемые магниевые сплавы отличаются большей прочностью, пластичностью и вязкостью. Они используются для производства заготовок методами прокатки, прессования и штамповки. В качестве термической обработки изделий применяется закалка при температуре 350-410 градусов с последующим произвольным охлаждением без старения.

При нагреве пластические свойства таких материалов возрастают, поэтому обработка магниевых сплавов осуществляется посредством давления и при высоких температурах. Штамповка выполняется при 280-480 градусах под прессами посредством закрытых штампов. При холодной прокатке проводятся частые промежуточные рекристаллизационные отжиги.

При сварке магниевых сплавов прочность шва изделия может быть снижена на отрезках, где выполнялась подварка, из-за чувствительности таких материалов к перегреву.

И чем же наш герой не металл?

Некоторые характеристики магния:

Свойство металла Данные
Атомная масса 24,304 г/моль
Степени окисления 0; +2
Плотность 1,74 г/см3
Температура плавления 650оС
Теплопроводность (300 K) 156 Вт/(м·К)
Температура кипения 1090 оС
Ковалентный радиус 136 пм
Радиус иона 66 (+2e) пм
Электроотрицательность 1,31 (шкала Полинга)
Электродный потенциал −2,37 В
Степени окисления 0; +2
Энергия ионизации (первый электрон) 737,3 (7,64) кДж/моль (эВ)

Химия магниевых реакций

Вспомним школьные годы. Немного химии во время карантина не повредит.

Рекомендуем: УРАН — металл для мира и войны

Итак, химические свойства нашего героя:

  • К щелочам огненный металл равнодушен (сами такие, к щелочноземельным металлам относимся). В реакции со щелочами не вступает.
  • Зато во взаимодействие с кислотами вступает охотно, даже бурно, с выделением водорода.
  • На воздухе магний реагирует с кислородом воздуха, покрывается оксидной пленкой. Эта «одежка» защищает металл от дальнейшего окисления. Но влажная атмосфера разрушает нашего «горячего» героя. Потому его и не хранят во влажных помещениях.

Как он горит!

Немного найдется металлов, горящих на воздухе, и наш герой — один из них. Подожгите магниевую стружку, и вспыхнет яркий, жгучий огонь. Еще бы не жгучий, его температура более 3000 градусов. Только не зажигайте магний на песке. Металл прореагирует с диоксидом кремния в песке, и будет гореть веселее. Потому затушить «магниевый» пожар песочком не получится.

Порошок магния

Горящий магний можно использовать как факел в темноте. Пара грамм магния — и даже в самую черную ночь все будет видно в радиусе 5-7 метров.

Не увлекайтесь зрелищем горящего металла. Такой яркий свет запросто повредит сетчатку глаза.

Подожгите металл в луже, и увидите мощную вспышку. Здесь образуется гидроксид магния (Mg(OH)2) и водород, который многократно усилит мощность огня.

Печально: в 1937 году дирижабль «Гинденбург», наполненный водородом, загорелся. Погибла треть пассажиров. Эта трагедия поставила крест на дирижаблях, как виде воздушного транспорта.

Кстати, головная боль пожарных — магний нельзя тушить водой. От этого огонь разгорится еще больше. Углекислотный огнетушитель тоже не вариант, ведь наш необыкновенный герой в присутствии углекислого газа хорошо горит, образуя уголь и оксид магния:

2Мg + CO2 = C + 2MgO

История открытия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари назвали её «горькой солью», а также «английской» или «эпсомской солью». Минерал эпсомит представляет собой кристаллогидрат сульфата магния и имеет химическую формулу MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт выделил из белой магнезии восстановлением углём неизвестный металл, названный им австрием

. Позже было установлено, что «австрий » представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом.

В 1808 г. английский химик Гемфри Дэви с помощью электролиза увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому дал название «магнезиум», сохранившееся до сих пор во многих странах. В России с 1831 года принято название «магний». В 1829 г. французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид металлическим калием. В 1830 г. М. Фарадей получил магний электролизом расплавленного хлорида магния.

Сплавы на основе меди – виды, краткие сведения

Основные сплавы на основе меди, широко используемые в различных отраслях промышленности, – латуни и бронзы.

Латуни – виды, характеристики

К латуням относятся медные сплавы с цинком, процентное содержание которого составляет 5-45 %. При содержании Zn 5-10 % сплавы сохраняют красноватый цвет. Их часто используют в ювелирном деле для имитации золота. Эти разновидности латуни иначе называются: томпак, симилор, хризохалк, хризорин, ореид. При содержании цинка более 20 % латуни имеют желтый цвет.

По количеству компонентов латунные сплавы разделяют на:

  • Двухкомпонентные – содержат медь, цинк и примеси в незначительных количествах. Обозначаются буквой Л и цифровой группой, характеризующей содержание Cu в процентах. Такие сплавы, благодаря хорошей обрабатываемости давлением, используют при производстве прокаткой или прессованием различных полуфабрикатов: листового латунного металлопроката, труб, прутков, профилей, проволоки. Химический состав деформируемых латуней (предназначенных для обработки давлением) приведен в таблицах ГОСТа 15527-2004.
  • Многокомпонентые – в качестве дополнительных элементов используются алюминий,марганец, никель, свинец, олово. В маркировке после буквы Л указывается наименование дополнительного компонента и цифровые группы, характеризующие количество в процентах меди и легирующих компонентов. Многокомпонентные латуни часто относятся к категории литейных, используемых при производстве отливок. Их марки определяет ГОСТ 17711-93.

Бронзы – определение, разновидности, характеристики

Бронзами называют сплавы на основе меди, в которых цинк не относится к основным компонентам. К этой категории также не принадлежат медно-никелевые сплавы (мельхиоры). В маркировке ставят буквы Бр, после которых указывают элементы, присутствующие в составе, и их содержание в процентах. Легирующие компоненты в бронзах: олово, бериллий, свинец, кремний, алюминий.

Большинство бронз отличается хорошими литейными качествами, что позволяет применять их при производстве фасонных отливок. Часто эти сплавы востребованы при производстве деталей, к которым предъявляются высокие требования по коррозионной стойкости и антифрикционным характеристикам. Это зубчатые и червячные колеса, седла клапанов, втулки.

Магний и его сплавы

Главным достоинством магния как машиностроительного материала являются низкая плотность, технологичность. Однако его коррозионная стойкость во влажных средах, кислотах, растворах солей крайне низка.
Чистый магний практически не используют в качестве конструкционного материала из-за его недостаточной коррозионной стойкости. Он применяется в качестве легирующей добавки к сталям и чугунам и в ракетной технике при создании твердых топлив.

Эксплуатационные свойства магния улучшают легированием марганцем, алюминием, цинком и другими элементами. Легирование способствует повышению коррозионной стойкости (Zr, Mn), прочности (Al, Zn, Mn, Zr), жаропрочности (Th) магниевых сплавов, снижению окисляемости их при плавке, литье и термообработке.

Сплавы на основе магния классифицируют по:

  • механическим свойствам – невысокой, средней прочности; высокопрочные, жаропрочные;
  • технологии переработки – литейные и деформируемые;
  • отношению к термической обработке – упрочняемые и неупрочняемые термической обработкой.

Маркировка магниевых сплавов состоит из буквы, обозначающей соответственно сплав (М), и буквы, указывающей способ технологии переработки (А – для деформируемых,Л – для литейных), а также цифры, обозначающей порядковый номер сплава.

Деформируемые магниевые сплавы MA1, MA2, МА3, MA8 применяют для изготовления полуфабрикатов – прутков, труб, полос и листов, а также для штамповок и поковок.

Литейные магниевые сплавы МЛ1, МЛ2, МЛ3, МЛ4, МЛ5, МЛ6 нашли широкое применение для производства фасонных отливок. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной и автомобильной промышленности: картеры, корпуса приборов, колесные диски, фермы шасси самолетов.

Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •    Карта раздела
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Сплавы магниевые литейные, ГОСТ 2856-79

Марка сплава Химический состав, %
Основные компоненты Сумма примесей, не более
Mg Al Mn Zn Zr Cd In Сумма РЗМ La Nd Y
МЛ3 Основа 2,5-3,5 0,15-0,5 0,5-1,5 0,5
МЛ4 5,0-7,0 0,15-0,5 2,0-3,0 0,5
МЛ4п.ч. 5,0-7,0 0,15-0,5 2,0-3,0 0,13
МЛ3 7,5-9,0 0,15-0,5 0,2-0,8 0,5
МЛ5 п.ч. 7,5-9,0 0,15-0,5 0,2-0,8 0,13
МЛ5 о.н. 7,5-9,0 0,15-0,5 0,2-0,8 0,7
МЛ6 9,0-10,2 0,1-0,5 0,5-1,2 0,5
МЛ8 (Мл12-1) 5,5-6,6 0,7-1,1 0,2-0,8 0,2
МЛ9(ВМл2) 0,4-1,0 0,2-0,8 1,9-2,6 0,35
МЛ 10 0,1-0,7 0,4-1,0 2,2-2,8 0,2
МЛ11 0,2-0,7 0,4-1,0 2,5-4,0 0,2
МЛ12 4,0-5,0 0,6-1,1 0,2
МЛ15 4,0-5,0 0,7-1,1 0,6-1,2 0,2
МЛ19 0,1-0,6 0,4-1,0 1,6-2,3 1,4-2,2 0,25

Нержавейка, которая магнитится

Ферритные сплавы

В них содержится хром в больших количествах, примерно 20 %. Обладают высокими магнитными свойствами и стойкостью к коррозии. Приобретают большую мягкость из-за уменьшения в составе углерода и легко поддаются различным видам обработки. Чаще всего такие сплавы применяют в тяжелой промышленности, на предприятиях пищевой промышленности, также из них изготавливают элементы систем отопления. Стоят они дешевле, чем аустенитные сплавы.

Некоторые особенности ферритных сплавов позволяют применять их для замены более дорогих материалов:

  • маленький уровень теплового расширения и теплопроводность;
  • повышенная температурная стойкость и текучесть;
  • устойчивость к деформации и коррозии.

Это позволяет использовать эти сплавы в изготовлении электромагнитных приводов и исполняющих механизмов.

Мартенситные сплавы

Обладают повышенной прочностью, не уступают углеродистым сталям, благодаря закалке и отпуску. Это абсолютные ферромагнетики. Встречаются нечасто, поскольку сложно выдержать чистый состав. Сплавы с высоким содержанием хрома устойчивы к влажности и агрессивным средам. Отлично поддаются сварке, можно применять как горячую так и холодную штамповку.

Мартенситы жаропрочны и способны к самозакаливанию. Применяются в машиностроении для изготовления абразивов, в изготовлении столовых приборов, элементов насосных систем, пружин, хирургического и различного режущего инструмента. Среди нержавеющих сталей мартенситные сплавы обладают самой высокой способностью к намагничиванию.

Мартенситно-ферритные сплавы

Имеют неплохие эксплуатационные характеристики, легко поддаются термообработке. Но при сварке имеют склонность к образованию холодных трещин. Применяются в том случае, когда необходимы поверхности, часто подвергающиеся нагреву, коллекторы, котлы, трубопроводы.

История открытия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари назвали её «горькой солью», а также «английской» или «эпсомской солью». Минерал эпсомит представляет собой кристаллогидрат сульфата магния и имеет химическую формулу MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт выделил из белой магнезии восстановлением углём неизвестный металл, названный им австрием

. Позже было установлено, что «австрий » представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом.

В 1808 г. английский химик Гемфри Дэви с помощью электролиза увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому дал название «магнезиум», сохранившееся до сих пор во многих странах. В России с 1831 года принято название «магний». В 1829 г. французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид металлическим калием. В 1830 г. М. Фарадей получил магний электролизом расплавленного хлорида магния.

Литейные свойства сплавов

Наилучшими литейными свойствами среди продуктов этих трех групп обладают алюминий-магниевые сплавы. Они относятся к классу высокопрочных материалов (до 220 МПа), поэтому являются оптимальным вариантом для изготовления деталей двигателей самолетов, автомобилей и другой техники, работающей в условиях механических и температурных нагрузок.

Для повышения прочностных характеристик алюминиево-магниевые сплавы легируют и другими элементами. А вот присутствие примесей железа и меди нежелательно, так как эти элементы оказывают отрицательное влияние на свариваемость и коррозионную стойкость сплавов.

Литейные магниевые сплавы приготавливаются в различных типах плавильных печей: в отражательных, в тигельных с газовым, нефтяным либо электрическим нагревом или в тигельных индукционных установках.

Для предотвращения горения в процессе плавки и при литье используются специальные флюсы и присадки. Отливки получают путем литья в песчаные, гипсовые и оболочковые формы, под давлением и с использованием выплавляемых моделей.

Получение и производство

Для изготовления сплавов используются материалы высокой чистоты, поскольку, как говорилось выше, даже мельчайшие примеси нежелательных элементов могу существенно ухудшить свойства готового продукта.

Получение сплавов магния облегчается тем, что температура плавления расплава не превосходит 700˚С. Для получения материала с требуемыми свойствами в расплав чистого магния вводят необходимое количество легирующих элементов. Газовый состав атмосферы вокруг расплава должен быть очищен от водорода, поскольку его высокая растворимость в магнии способна привести к дефектам внутренней структуры.

Элементи, сплавливаемые с медной основой

Существует много легирующих присадок к главному веществу, посредством которых сплавам меди с другими металлами придаются требуемые для производства свойства. Чтобы довести до пользователей состав многокомпонентного материала, принято обозначать наименования входящих в новый металл элементов по первым буквам их названий: цинк — Ц, никель — Н, олово — О, марганец — Мц, магний — Мг. Аналогичным образом шифруют хром, железо, свинец, кремний, алюминий, фосфор и бериллий.

Примеры маркировки

Медь входит в состав многих сплавов, и для определения содержания Cu в предмете надо разбираться в маркировках, представлять, в каких пределах изменяется доля основного металла. Наибольшую известность приобрели:

  • латунь (Cu + Zn);
  • бронза (Cu + Sn);
  • мельхиор — сплав с никелем; из него чеканили советские монеты от 10 копеек, изготавливали подарочные наборы столовых ножей, вилок и ложек.

Больше распространены изделия из бронзы и латуни — жёлтой меди, как её именуют в сантехнике. По химическому составу сплав с цинком бывает двойным и многокомпонентным. В последнем случае в него входят другие легирующие добавки, например, марганец. Соотношение основного металла и вторичных компонентов варьирует в широких пределах.

Сбор легированного красного металла

Оценивая с точки зрения прибыльности доход от сдачи 1 кг лома меди и её сплавов, приходят к выводу о предпочтительности поиска чистого металла: в этом случае рентабельность оказывается выше в 1,5―2 раза. Найти Cu без добавления легирующих элементов — большая удача и случается редко. Медные сплавы часто встречаются в отслуживших свой век бытовых приборах:

  • в сантехнике — душевые шланги и трубки, смесители, краны и вентили, регистры отопления;
  • в мебели и элементах квартиры — фурнитура шкафов, окон и дверей;
  • в светильниках старого года выпуска.

Практически во всех применяемых сегодня медных сплавах, кроме латуни, количество легирующих элементов не превышает 10%. Свойства сплавов меди и их применение зависят от добавок: кремний и алюминий придают пластичность, свинец — улучшает антифрикционные качества и упрощает обработку резанием. Стойкость против коррозии усиливается за счёт цинка, олова и марганца. Латунь используется преимущественно в приборо- и машиностроении — запорные устройства и вкладыши скольжения, из неё изготавливают гильзы для боеприпасов. Детали оборудования также делают на основе сплавов. В известном материале дюраль меди содержится 4,4%. Соединения Cu + Au применяют в ювелирном деле для придания золоту большей стойкости к истиранию.

Характеристики магния

Промышленное производство и использование магния началось сравнительно недавно – всего около 100 лет назад. Этот металл имеет малую массу, так как обладает сравнительно низкой плотностью (1,74 г/смᶟ), хорошую устойчивость в воздухе, щелочах, газовых средах с содержанием фтора и в минеральных маслах.

Температура его плавления составляет 650 градусов. Он характеризуется высокой химической активностью вплоть до самопроизвольного возгорания на воздухе. Предел прочности чистого магния составляет 190 Мпа, модуль упругости – 4 500 Мпа, относительное удлинение – 18%. Металл отличается высокой демпфирующей способностью (эффективно поглощает упругие колебания), что обеспечивает ему отличную переносимость ударных нагрузок и снижение чувствительности к резонансным явлениям.

К числу прочих особенностей данного элемента относятся хорошая теплопроводность, низкая способность поглощать тепловые нейтроны и взаимодействовать с ядерным топливом. Благодаря совокупности этих свойств магний является идеальным материалом для создания герметичных оболочек высокотемпературных элементов ядерных реакторов.

Магний хорошо сплавляется с разными металлами и относится к числу сильных восстановителей, без которых невозможен процесс металлотермии.

В чистом виде он в основном применяется как легирующая добавка в сплавах с алюминием, титаном и некоторыми другими химическими элементами. В черной металлургии с помощью магния проводится глубокая десульфурация стали и чугуна, а также улучшаются свойства последнего посредством сфероидизации графита.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: