Характеристики, свойства, виды и применение чугуна

Производственные технологии

Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.

Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.

Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.

Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа

Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее

Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.

На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.

При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.

Ковкий чугун

Ковким называется чугун, который получается при длительном отжиге (томлении) отливок из белого чугуна. При отжиге чугуна цементит Fe3C разлагается с образованием железа и углерода отжига (графита), имеющего компактную хлопиевидную форму (рис. 75

). При этой формеграфита получается чугун, обладающий повышенной прочностью, некоторой пластичностью и сопротивлением ударным нагрузкам.Рис. 75

. Схема микроструктуры ковкого чугуна

Название «ковкий чугун» условно и указывает лишь на то, что этот материал по сравнению с серым чугуном является более пластичным; в действительности же ковкий чугун никогда ковке не подвергается, из него так же, как и из серого чугуна, изготовляют лишь фасонные отливки для машиностроения. Для этого выплавляют чугун такого химического состава, чтобы при затвердевании в форме он получился белым (с перлитно-цементитной структурой). Из белого чугуна обычным способом получают отливки, которые затем подвергают отжигу с целью разложения цементита и получения необходимой конечной структуры.Ковкий чугун по своим механическим свойствам занимает промежуточное положение между серым чугуном и сталью. Он имеет достаточно высокие антикоррозионные свойства и хорошо работает в среде сырого воздуха, топочных газов и воды. Его химическая стойкость выше стойкости углеродистых сталей.

В зависимости от способа производства ковкого чугуна он разделяется на две группы: ферритный (черносердечный) и перлитный (белосердечный).

Ферритный (черносердечный) ковкий чугун получается при отжиге отливок в нейтральной среде. Этот чугун имеет бархатистый черный излом с тонкой наружной серой каймой и структурой, состоящей из феррита и углерода отжига (рис. 75, б). Химический состав металла отливок до отжига: 2,2 ÷ 2,9%С; 0,8 ÷ 1,4% S; 0,3 ÷ 0,5% Мn; до 0,2% Р; до 0,12%S; до 0,05% Сr. С уменьшением содержания углерода механическая прочность чугуна повышается, но ухудшаются его литейные свойства.

Механическая прочность ферритного ковкого чугуна соответствует маркам КЧ 37—12, КЧ 35—10, КЧ 33—8 и КЧ 30—6, где КЧ означают «ковкий чугун», первое число определяет минимальный предел прочности при растяжении, второе число — минимальное относительное удлинение в процентах. Из ферритного ковкого чугуна отливают детали для автомобилей и сельскохозяйственных машин, испытывающих сложные напряжения и ударные нагрузки.

Перлитный (белосердечный) ковкий чугун получают при отжиге отливок из белого чугуна в окислительной среде. Этот чугун имеет серебристый излом.

Микроструктура белосердечного ковкого чугуна резко меняется по сечению: у края металл отливки имеет структуру феррита, к центру — структуру перлитно-ферритную (рис. 75, а) или перлитную с углеродом отжига. Белый чугун, используемый для получения белосердечного ковкого чугуна, имеет следующий химический состав: 2,8—3,3%С; до 1,1% Si; 0,5—0,7% Мn; до 0,2% Р, до 0,3% S. После отжига содержание углерода в чугуне уменьшается. В отливках со стенками толщиной 3—5 мм содержание углерода уменьшается до 0,6%, в отливках со стенками толщиной 10—15 мм — до 1,5—2,2%.

Механическая прочность белосердечного ковкого чугуна соответствует маркам КЧ 40—3, КЧ 35—4 и КЧ 30—3. Белосердечный ковкий чугун имеет меньшее удлинение, чем черносердечный, поэтому его применяют для малоответственных отливок (арматура, гаечные ключи, фитинги, гайки и др.). Отжиг отливок для получения ферритного и перлитного ковкого чугуна производят по различным режимам, описанным ниже.

Характерные черты и свойства чугуна

Чугун обладает такими свойствами:

  1. Физические свойства: удельный вес, действительная усадка, коэффициент линейного расширения. Например, содержание углерода в чугуне напрямую влияет на его удельный вес.
  2. Тепловые свойства. Теплопроводность обычно рассчитывают по правилу смещения. Для твердого состояния металла объемная теплоемкость составляет 1 кал/см3*оС. Если металл находится в жидком состоянии, то она примерно равна 1,5 кал/см3*оС.
  3. Механические свойства. Примечательно, что на эти свойства влияет как сама основа, так и форма и размеры графита. Серый чугун с перлитной основой является наиболее прочным, а с ферритной — самым пластичным. Пластинчатая форма графита характеризуется максимальным снижением прочности, в то время как у шаровидной формы это снижение минимально.
  4. Гидродинамические свойства. Наличие в составе марганца и серы влияет на вязкость материала. Также она имеет свойство увеличиваться, когда температура сплава переходит точку начала затвердевания.
  5. Технологические свойства. Этому металлу характерны отличные литейные качества, а также стойкость к износу и вибрации.
  6. Химические свойства. По мере убывания электродного потенциала структурные составляющие сплава располагаются в следующем порядке: цементит — фосфидная эвтектика — феррит.

На свойства сплава также оказывают влияние специальные примеси:

  • Добавление серы значительно уменьшает текучесть и снижает тугоплавкость.
  • Фосфор позволяет изготовить изделия разнообразной формы, но при этом уменьшает его прочность.
  • Добавление кремния уменьшает температуру плавления материала, а также заметно улучшает литейные свойства. Содержание кремния в различном процентном соотношении дает возможность получить сплавы разного цвета: от ферритного до чисто белого.
  • Присутствие в сплаве марганца значительно повышает твердость и прочность материала, но при этом ухудшаются его литейные и технологические качества.
  • Кроме этих примесей в состав сплава могут также входить иные компоненты. В таком случае материалы называют легированными. Чаще всего к чугуну примешиваются титан, алюминий, хром, медь и никель.

Механические свойства металла

Механические свойства КЧ зависят от суммарной доли включённого в его химический состав углерода и отжига. Для получения высококачественного сплава нужно выбирать чугунные отливки с низким содержанием углерода от 2,4 до 2,7%. Показатель твёрдости имеет прямую зависимость от состава, значение прочности и пластичности – от количества графита. В отличие от материала с шарообразным графитом, большую роль играет не только форма, но и число графитовых зёрен.

Согласно этому максимальной прочности можно достичь при получении дисперсного перлита с малым числом компактного графита, а наивысшей пластичности – при получении феррита с таким же объёмом графита. Показатель обрабатываемости ковкого сплава приближен к высокопрочному чугуну.

Ковкий чугун нормально эксплуатируется в низких температурных режимах, но по сравнению с серым сплавом обладает высоким показателем хрупкости. Температурное воздействие на химические свойства ковкого сплава проявляется в основном при отметке свыше 400 градусов в снижении пределов упругости и текучести, а также в увеличении показателя относительного удлинения после разрыва.

Порог хрупкости феррита существенно ниже, чем в случае с перлитом. При отсутствии дефектов литья, отливки из ковкого сплава являются герметичными в условиях сдавливания свыше 20 МПа. Перлитный ковкий чугун обладает высокой износостойкостью во время эксплуатации со смазочным материалом при давлениях до 20 МПа и быстро изнашивается от трения без смазки.

Разница между сталью и чугуном

Часто применяемыми в быту продуктами металлургической промышленности являются чугун и сталь. Оба материала представляют собой уникальный сплав железа и углерода. Но использование одинаковых компонентов при производстве не наделяет материалы схожими свойствами. Чугун и сталь – два различных материала. В чем же их отличия?

статьи

Чтобы получить сталь, необходимо сплавить железо, углерод и примеси. При этом содержание углерода в смеси не должно превышать 2%, а железа быть не менее 45%. Остальной процент в смеси могут составлять легирующие элементы (связывающие смесь вещества, например, молибден, никель, хром и другие). Благодаря углероду железо приобретает прочность и предельную твердость. Без его участия получалось бы вязкое и пластичное вещество.

Чугун

При производстве чугуна также сплавляют железо и углерод. Только содержание последнего в смеси составляет более 2%. Помимо перечисленных компонентов в смеси содержатся постоянные примеси: кремний, марганец, фосфор, сера и легирующие добавки.

Отличия

В металлургии различают довольно большое количество разновидностей стали. Их классификация зависит от количества того или иного компонента в смеси. Например, большое содержание связывающих элементов дает высоколегированную (более 11%) сталь. Кроме этого существуют:

  • низколегированные – до 4% связывающих компонентов;
  • среднелегированные – до 11% связывающих элементов.

углерода в сплаве также дает свою классификацию металлу:

  • низкоуглеродистый металл – до 0,25%С;
  • среднеуглеродистый металл – до 0,55%С;
  • высокоуглеродистый – до 2%С.

И, наконец, в зависимости от содержания неметаллических включений, которые образуются в результате реакций (например, оксиды, фосфиды, сульфиды), осуществляется классификация по физическим свойствам:

  • особо высококачественная;
  • высококачественная;
  • качественная;
  • обычная сталь.

Это далеко не полная классификация стали. Еще различают виды по структуре материала, методу производства и так далее. Но каким бы способом ни сплавляли основные компоненты, в итоге получают твердый, прочный, износостойкий и устойчивый к деформациям материал с удельным весом 7,75 (до 7,9) Г/см3. Температура плавления стали – от 1450 до 1520°C.

В отличие от стали чугун более хрупок, его отличает способность разрушаться без заметных остаточных деформаций. При этом сам углерод в сплаве представлен в виде графита и/или цементита, их форма и соответственно количество определяют разновидности чугуна:

  • белый – весь необходимый углерод содержится в виде цементита. Материал белый на изломе. Очень тверд, но хрупок. Он поддается обработке и в основном используется для получения ковкой разновидности;
  • серый – углерод в виде графита (пластичная форма). Мягок, отлично поддается обработке (можно резать) и имеет низкую температуру плавления;
  • ковкий – получается после продолжительного отжига белого вида, в результате чего образуется графит. Нагрев (свыше 900°C) и скорость охлаждения графита негативно влияют на свойства материала. Это затрудняет сварку и обработку;
  • высокопрочный – содержит шаровидный графит, образующийся в результате кристаллизации.

углерода в составе определяет его температуру плавления (чем его больше, тем ниже температура) и выше текучесть при нагреве. Поэтому чугун – это жидкотекучий, непластичный, хрупкий и трудно поддающийся обработке материал с удельным весом 6,9 (7,3) Г/см3. Температура плавления – от 1150 до 1250°C.

Где используется чугун

Чугун применяется в двух качествах: базовый компонент при выплавке стали либо материал промышленной продукции.

Чугунная печь — буржуйка

Главная сфера применения сплава – машиностроение.

Технология, номенклатура продукции определяются видом чугуна.

Чугунная лестница

Белый чугун

Углерод-цементит, формируется благодаря мгновенному охлаждению. Опознается по беловатому цвету излома, твердости, хрупкости. Сплав непригоден к механической обработке резанием. Идет на цельное износостойкое литье (прокатные валки, детали мельничных, дробильных механизмов) и как исходник ковких видов чугуна.

Микроструктура белого чугуна при 100-кратном увеличении

Серый

Основа структуры – слоистый графит, придающий сероватость. Поддается механической обработке, однако прочность, пластичность невысоки.

Достоинства: хорошие антифрикционные, демпфирующие свойства, мини-чувствительность к аккумуляторам напряжения, текучесть, минимум дефектов при усадке.

Используется как материал отливок сложной конфигурации с толщиной стенок до 5 см.

Из него делают прокатные станы, маховики, колонны, станины, канализационно-водопроводный ассортимент (люки, трубы, фурнитура).

Чугунная крышка канализационного люка

Ковкий

Результат термообработки белого чугуна с хлопьевидным графитом. Такая структура обеспечивает прочность, пластичность, хорошую обрабатываемость отливок, отсутствие внутреннего напряжения.

Благодаря этому сплав нашел применение как материал деталей и элементов, функционирующих в условиях ударов и вибрации: постамент под массивное оборудование, опоры автострад, железнодорожных мостов, коленвалы дизельных двигателей.

Мост через Северн — первый в мире чугунный мост

Специальные

Сплавы с дополнительными характеристиками, полученными легированием, отжигом и охлаждением по специальной технологии.

Подразделяются на:

  • ферросплавы;
  • коррозие-, износо-, жаростойкие;
  • антифрикционные;
  • с электромагнитными свойствами;
  • декоративные.

Состав сплавов, технология регламентируются стандартами.

Высокопрочные марки становятся механизмом турбин, коленвалов, тракторных, автомобильных двигателей, шестерней, прокатных валков.

Антифрикционные марки идут на подшипники, втулки топливных насосов, клапаны, кольца поршней автомобилей.

Из декоративных выковывают ограды, колонны, фонтаны, мелкую пластику.

Чугунный забор

Передельный

Полуфабрикат, исходник для передела в сталь либо создания отливок. Процент фосфорного, кремниевого, серного, марганцевого компонента в сплаве регламентируется отраслевым стандартом.

В зависимости от назначения и процента кремния различают передельный чугун для сталеплавильного, литейного производства, фосфористый, высокопрочный.

Последний вид сплава содержит в составе шарики графита и магний. Идет на изготовление деталей, работающих при экстремальных нагрузках (механических и термических), в агрессивных средах.

Применение

1) Чугун незаменим в машиностроении. Большое количество деталей (поршни, шестерни, электродвигатели) производятся именно из него. 2) Ценен чугун и в металлургической отрасли. Он обладает отличными литейными качествами, а также не дорог в цене. 2) Продолжает чугун широко использоваться для создания канализационных труб и сантехники. Из него изготавливаются ванны, отличающиеся долговечностью, раковины и фитинги. Некоторые радиаторы, приобретённые годы назад, всё ещё продолжают служить своим владельцам. 3) Сплав идёт и на производство посуды. Сковородки из чугуна пользуются особой популярностью. 4) Печи из чугуна не только значительно дешевле аналогов, но и не подвержены деформации при нагреве. 5) Также из чугуна создаются декоративные элементы или художественные элементы: ажурные ограды, ворота и решётки.

В последнее время из-за высокой затратности производства чугуна, его использование значительно сократилось. Чтобы облегчить производство, вместо него стали использовать сплавы более лёгкие для изготовления. Эта тенденция продолжается уже несколько лет, и для многих сейчас чугун кажется пережитком прошлого. Но остались отрасли, в которых он пока не сдаёт позиции и по-прежнему крайне необходим. Поэтому полностью отказаться от использования чугуна не представляется возможным.

Классификация

Чугун классифицируют по нескольким основаниям:

  • По габаритам и форме вкраплений графита. Слоистые, сфероидные, вермикулярные, хлопья.
  • По виду углерода. Графитовые, цементитовые.
  • По технологии выработки. Серые, белые, передельные.
  • По наличию присадок. Рядовые и легированные. Легированные – это сплавы чугуна с металлами (молибден, никель, хром, титан, другие). Сплавы с такими металлами придают изделиям пластичность, стойкость к износу, разрушению, коррозии.

Микроструктура белого чугуна

Характеристики продукта закладываются на стадии производства.

Маркировка чугуна

В промышленности разновидности чугуна маркируются следующим образом:

  • передельный чугун — П1, П2;
  • передельный чугун для отливок (передельно-литейный) — ПЛ1, ПЛ2;
  • передельный фосфористый чугун — ПФ1, ПФ2, ПФ3;
  • передельный высококачественный чугун — ПВК1, ПВК2, ПВК3;
  • чугун с пластинчатым графитом — СЧ (цифры после букв «СЧ», обозначают величину временного сопротивления разрыву в кгс/мм).

Антифрикционный чугун:

  • антифрикционный серый — АЧС;
  • антифрикционный высокопрочный — АЧВ;
  • антифрикционный ковкий — АЧК;
  • чугун с шаровидным графитом для отливок — ВЧ (цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм и относительное удлинение (%);
  • чугун легированный со специальными свойствами — Ч.

Типы чугуна по состоянию углерода

Поскольку состояние углерода в расплаве при различных условиях охлаждения и в присутствии иных веществ в составе сплава меняется, свойства чугуна также могут значительно отличаться. Это видно невооруженным глазом по цвету свежего, не покрытого ржавчиной излома. Как правило, более темные (серые чугуны) содержат наибольшее количество свободного углерода в виде различной формы включений графита.

Содержание химически связанного углерода отражается на цвете сплава, он заметно светлее, такой чугун называют белым. В перлитном чугуне может быть равное количество связанного и свободного углерода, это также отражается на цвете изделий. Уже на протяжении нескольких столетий существует упрощенная классификация чугунов по цвету, разделяющая чугуны на три типа: белый, серый и половинчатый.

Белый чугун

Белый чугун имеет наиболее светлый излом. Наибольшее количество углерода в нем связано с железом и иными металлами. Образуется такой сплав при быстром охлаждении. Использование этого типа сплава ограничено, ввиду невысокой прочности.

Серый чугун

При более медленном охлаждении в расплаве проходит значительно больше процессов. Углерод частично связывается с металлами, но значительная его часть кристаллизуется в чистом виде, образуя включения графита. Размер и форма этих включений зависят от скорости остывания расплава, а также от наличия в нем различных примесей. Так получают чугуны, изделия из которых востребованы в различных отраслях хозяйства и в быту. Среди разновидностей этого типа различают ковкий и высокопрочный чугун.

Половинчатый чугун

При особых условиях охлаждения получают сплавы, в которых связанного и свободного углерода примерно поровну. Из него изготавливают детали машин, основным требованием к которым является износоустойчивость при трении: коленчатые валы, колесные пары и многое другое. Графит в этом случае играет роль смазки.

Инструментальные углеродистые стали

Обозначение и маркировка инструментальных углеродистых сталей

Инструментальный углеродистые стали маркируют в соответствии с ГОСТ 1435-90.

Инструментальные углеродистые стали выпускают следующих марок: У7.У8ГА.У8Г, У9, У 10, У 11, У 12 и У 13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г после цифры означает, что сталь имеет повышенное содержание марганца. Марка инструментальной углеродистой стали высокого качества имеет букву А.

Примеры обозначения и расшифровки

  1. У12 — сталь инструментальная, высокоуглеродистая, содержащая 1,2% углерода, качественная.
  2. У8ГА — сталь инструментальная, высокоуглеродистая, содержащая 0,8% углерода, 1% марганца, высококачественная
  3. У9А — сталь инструментальная, высокоуглеродистая, содержащая 0,9% углерода, высококачественная.

Обозначение и маркировка легированных сталей

Легированные стали маркируются комбинацией цифр и заглавных букв алфавита. В обозначении нет слова «сталь» или символа «Ст». Например, 40Х, 38ХМ10А, 20Х13. Первые две цифры обозначают содержание углерода в сотых долях процента. Следующие буквы являются сокращенным обозначением элемента. Цифры, стоящие после букв, обозначают содержание этого элемента в целых процентах. Если за буквой не стоит цифра, значит содержание этого элемента до 1%.

Таблица 4. — Обозначение элементов марка

Ю-Al Алюминий C-Si Кремний А- N Азот
Р-В Бор Г — Mn Марганец Д -Cu Медь
Ф-V Ванадий М-Мо Молибден Е-Se Селен
В-вольфрам Н-Ni Никель Ц-Zr Цирконий
Ж-Fe Железо T-Ti Титан Б-Nb Ниобий
К- Co Кобальт Та — Тантал Х- хром

Для изготовления измерительных инструментов применяют Х, ХВГ. Стали для штампов: 9Х, Х12М, 3Х2Н8Ф.

Стали для ударного инструмента: 4ХС, 5ХВ2С.

Обозначение быстрорежущих высоколегированными сталей

Все быстрорежущие стали являются высоколегированными. Это стали для оснащения рабочей части резцов, фрез, сверл и т.д.

Маркировка быстрорежущих сталей всегда начинается с буквы Р и числа, показывающего содержание вольфрама в процентах. Наиболее распространенными марками являются Р9, Р18, Р12.

  1. Коррозионностойкие стали.

    Коррозионностойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрес­сивных средах. Коррозионностойкие стали получают легированием низко- и среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали. Например, хромистые стали 95Х18, 30Х13, 08Х17Т. Хромоникелевые нержавеющие имеют большую коррозийную стойкость, чем хромистые стали, обладают повышенной прочностью и хорошей технологичностью в отношении обработки давлением. Например, 12Х18Н10Т, 08Х10Н20Т2.

  2. Жаростойкие

    оболадают стойкостью против химического разрушения в газовых средах, работающие в слабонагруженном состоянии

  3. Жаропрочные стали

    — это стали, способные выдерживать механические нагрузки без существенных деформаций при высоких температурах. К числу жаропрочных относят стали, содержащие хром, кремний, молибден, никель и др.

  4. Например, 40Х10С2М, 11Х11Н2В2МФ.
  5. Износостойкие стали

    , обладающие повышенной стойкостью к износу: шарикоподшипниковые, графитизированные и высокомарганцовистые. Особенности обозначения подшипниковых сталей. Маркировка начинается с буквы Ш, цифра, стоящая после буквы Х, показывает содержание хрома в десятых долях процента. Например, ШХ9, ШХ15ГС.

Производственные технологии

Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.

Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.

Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.

Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа

Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее

Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.

На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.

При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Рест металл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: